Background: The understanding of neurophysiological correlates underlying the risk of developing depression may have a significant impact on its early and objective identification. Research has identified abnormal resting-state electroencephalography (EEG) power and functional connectivity patterns in major depression. However, the entity of dysfunctional EEG dynamics in dysphoria is yet unknown. Methods: 32-channel EEG was recorded in 26 female individuals with dysphoria and in 38 age-matched, female healthy controls. EEG power spectra and alpha asymmetry in frontal and posterior channels were calculated in a 4-minute resting condition. An EEG functional connectivity analysis was conducted through phase locking values, particularly mean phase coherence. Results: While individuals with dysphoria did not differ from controls in EEG spectra and asymmetry, they exhibited dysfunctional brain connectivity. Particularly, in the theta band (4-8 Hz), participants with dysphoria showed increased connectivity between right frontal and central areas and right temporal and left occipital areas. Moreover, in the alpha band (8-12 Hz), dysphoria was associated with increased connectivity between right and left prefrontal cortex and between frontal and central-occipital areas bilaterally. Limitations: All participants belonged to the female gender and were relatively young. Mean phase coherence did not allow to compute the causal and directional relation between brain areas. Conclusions: An increased EEG functional connectivity in the theta and alpha bands characterizes dysphoria. These patterns may be associated with the excessive self-focus and ruminative thinking that typifies depressive symptoms. EEG connectivity patterns may represent a promising measure to identify individuals with a higher risk of developing depression.
Increased functional connectivity within alpha and theta frequency bands in dysphoria: A resting-state EEG study
Dell'Acqua C.
;Messerotti Benvenuti S.;Gentili C.;
2021
Abstract
Background: The understanding of neurophysiological correlates underlying the risk of developing depression may have a significant impact on its early and objective identification. Research has identified abnormal resting-state electroencephalography (EEG) power and functional connectivity patterns in major depression. However, the entity of dysfunctional EEG dynamics in dysphoria is yet unknown. Methods: 32-channel EEG was recorded in 26 female individuals with dysphoria and in 38 age-matched, female healthy controls. EEG power spectra and alpha asymmetry in frontal and posterior channels were calculated in a 4-minute resting condition. An EEG functional connectivity analysis was conducted through phase locking values, particularly mean phase coherence. Results: While individuals with dysphoria did not differ from controls in EEG spectra and asymmetry, they exhibited dysfunctional brain connectivity. Particularly, in the theta band (4-8 Hz), participants with dysphoria showed increased connectivity between right frontal and central areas and right temporal and left occipital areas. Moreover, in the alpha band (8-12 Hz), dysphoria was associated with increased connectivity between right and left prefrontal cortex and between frontal and central-occipital areas bilaterally. Limitations: All participants belonged to the female gender and were relatively young. Mean phase coherence did not allow to compute the causal and directional relation between brain areas. Conclusions: An increased EEG functional connectivity in the theta and alpha bands characterizes dysphoria. These patterns may be associated with the excessive self-focus and ruminative thinking that typifies depressive symptoms. EEG connectivity patterns may represent a promising measure to identify individuals with a higher risk of developing depression.File | Dimensione | Formato | |
---|---|---|---|
VoR.pdf
solo utenti autorizzati
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
3.07 MB
Formato
Adobe PDF
|
3.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
preprint.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Creative commons
Dimensione
692.18 kB
Formato
Adobe PDF
|
692.18 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.