The deterministic sequence → structure → function relationship is not applicable to describe how proteins dynamically adapt to different cellular conditions. A stochastic model is required to capture functional promiscuity, redundant sequence motifs, dynamic interactions, or conformational heterogeneity, which facilitate the decision-making in regulatory processes, ranging from enzymes to membraneless cellular compartments. The fuzzy set theory offers a quantitative framework to address these problems. The fuzzy formalism allows the simultaneous involvement of proteins in multiple activities, the degree of which is given by the corresponding memberships. Adaptation is described via a fuzzy inference system, which relates heterogeneous conformational ensembles to different biological activities. Sequence redundancies (e.g., tandem motifs) can also be treated by fuzzy sets to characterize structural transitions affecting the heterogeneous interaction patterns (e.g., pathological fibrillization of stress granules). The proposed framework can provide quantitative protein models, under stochastic cellular conditions.

Towards a stochastic paradigm: From fuzzy ensembles to cellular functions

Fuxreiter M.
2018

Abstract

The deterministic sequence → structure → function relationship is not applicable to describe how proteins dynamically adapt to different cellular conditions. A stochastic model is required to capture functional promiscuity, redundant sequence motifs, dynamic interactions, or conformational heterogeneity, which facilitate the decision-making in regulatory processes, ranging from enzymes to membraneless cellular compartments. The fuzzy set theory offers a quantitative framework to address these problems. The fuzzy formalism allows the simultaneous involvement of proteins in multiple activities, the degree of which is given by the corresponding memberships. Adaptation is described via a fuzzy inference system, which relates heterogeneous conformational ensembles to different biological activities. Sequence redundancies (e.g., tandem motifs) can also be treated by fuzzy sets to characterize structural transitions affecting the heterogeneous interaction patterns (e.g., pathological fibrillization of stress granules). The proposed framework can provide quantitative protein models, under stochastic cellular conditions.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3365556
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact