Proteins containing intrinsically disordered (ID) regions are widespread in eukaryotic organisms and are mostly utilized in regulatory processes. ID regions can mediate binary interactions of proteins or promote organization of large assemblies. Post-translational modifications of ID regions often serve as decision points in signaling pathways. Why Nature distinguished ID proteins in molecular recognition functions? In a simple view, binding of ID regions is accompanied by a large entropic penalty as compared to folded proteins. Even in complexes however, ID regions can preserve their conformational freedom, thereby recruit further partners and perform various functions. What sort of benefits ID regions offer for molecular interactions and which properties are exploited in the corresponding complexes? Here, we review models explaining the recognition mechanisms of ID proteins. Motif-based interactions are central to all proposed scenarios, including prestructured elements, anchoring sites and linear motifs. We aim to extract consensus features of the models, which could be used to predict ID-binding sites for a variety of partners. Copyright © 2012 Wiley Periodicals, Inc.

Interactions via intrinsically disordered regions: What kind of motifs?

Fuxreiter M.
2012

Abstract

Proteins containing intrinsically disordered (ID) regions are widespread in eukaryotic organisms and are mostly utilized in regulatory processes. ID regions can mediate binary interactions of proteins or promote organization of large assemblies. Post-translational modifications of ID regions often serve as decision points in signaling pathways. Why Nature distinguished ID proteins in molecular recognition functions? In a simple view, binding of ID regions is accompanied by a large entropic penalty as compared to folded proteins. Even in complexes however, ID regions can preserve their conformational freedom, thereby recruit further partners and perform various functions. What sort of benefits ID regions offer for molecular interactions and which properties are exploited in the corresponding complexes? Here, we review models explaining the recognition mechanisms of ID proteins. Motif-based interactions are central to all proposed scenarios, including prestructured elements, anchoring sites and linear motifs. We aim to extract consensus features of the models, which could be used to predict ID-binding sites for a variety of partners. Copyright © 2012 Wiley Periodicals, Inc.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3365584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 71
social impact