The anticancer drug imatinib is often involved in therapeutic drug monitoring (TDM) studies aimed at improving the treatment of several forms of leukemia and gastrointestinal stromal tumors (GIST). To further implement the TDM of imatinib in clinical practice, we developed a detection assay by using an ssDNA aptamer, which demonstrated excellent selectivity and was not affected by interference from the components of human plasma samples. The efficient binding of imatinib to the aptamer was demonstrated by means of surface plasmon resonance (SPR) analysis, which allowed the development of a quantitative assay in the concentration range between 400 and 6000 ng mL−1 (0.7–10 μM), where a lower limit of quantification (LLOQ) of 400 ng mL−1 was achieved. The precision of the assay was found to be within 12.0%, whereas the accuracy was in a range between 97.1 and 101.5%. The sample preparation procedure displayed a recovery in the range of 48.8–52.8%. Solid validation data were collected according to the regulatory guidelines and the method was compared with standard analytical techniques, leading to the development of a feasible aptasensor for the TDM of patients administered with imatinib.

An SPR investigation into the therapeutic drug monitoring of the anticancer drug imatinib with selective aptamers operating in human plasma

Poetto, Ariana Soledad;Posocco, Bianca;Polo, Federico;
2021

Abstract

The anticancer drug imatinib is often involved in therapeutic drug monitoring (TDM) studies aimed at improving the treatment of several forms of leukemia and gastrointestinal stromal tumors (GIST). To further implement the TDM of imatinib in clinical practice, we developed a detection assay by using an ssDNA aptamer, which demonstrated excellent selectivity and was not affected by interference from the components of human plasma samples. The efficient binding of imatinib to the aptamer was demonstrated by means of surface plasmon resonance (SPR) analysis, which allowed the development of a quantitative assay in the concentration range between 400 and 6000 ng mL−1 (0.7–10 μM), where a lower limit of quantification (LLOQ) of 400 ng mL−1 was achieved. The precision of the assay was found to be within 12.0%, whereas the accuracy was in a range between 97.1 and 101.5%. The sample preparation procedure displayed a recovery in the range of 48.8–52.8%. Solid validation data were collected according to the regulatory guidelines and the method was compared with standard analytical techniques, leading to the development of a feasible aptasensor for the TDM of patients administered with imatinib.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3365645
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact