The screened Coulomb potential (SCP) method, combined with a quantitative description of the microenvironments around titratable groups, based on the Hydrophobic Fragmental Constants developed by Rekker, has been applied to calculate the pKa values of groups embedded in extremely hydrophobic microenvironments in proteins. This type of microenvironment is not common; but constitutes a small class, where the protein's architecture has evolved to lend special properties to the embedded residue. They are of significant interest because they are frequently important in catalysis and in proton and electron transfer reactions. In the SCP treatment these special cases are treated locally and therefore do not affect the accuracy of the pKa values calculated for other residues in less hydrophobic environments. Here the calibration of the algorithm is extended with the help of earlier results from lysozyme and of three mutants of staphylococcal nuclease (SNase) that were specially designed to measure the energetics of ionization of titratable groups buried in extremely hydrophobic microenvironments. The calibrated algorithm was subsequently applied to a fourth mutant of SNase and then to a very large dimeric amine oxidase of 1284 residues, where 334 are titratable. The observed pKa shifts of the buried residues are large (up to 4.7 pK units), and all cases are well reproduced by the calculations with a root mean square error of 0.22. These results support the hypothesis that protein electrostatics can only be described correctly and self-consistently if the inherent heterogeneity of these systems is properly accounted for. © 2002 Wiley-Liss, Inc.

The role of hydrophobic microenvironments in modulating pKa shifts in proteins

Fuxreiter M.;
2002

Abstract

The screened Coulomb potential (SCP) method, combined with a quantitative description of the microenvironments around titratable groups, based on the Hydrophobic Fragmental Constants developed by Rekker, has been applied to calculate the pKa values of groups embedded in extremely hydrophobic microenvironments in proteins. This type of microenvironment is not common; but constitutes a small class, where the protein's architecture has evolved to lend special properties to the embedded residue. They are of significant interest because they are frequently important in catalysis and in proton and electron transfer reactions. In the SCP treatment these special cases are treated locally and therefore do not affect the accuracy of the pKa values calculated for other residues in less hydrophobic environments. Here the calibration of the algorithm is extended with the help of earlier results from lysozyme and of three mutants of staphylococcal nuclease (SNase) that were specially designed to measure the energetics of ionization of titratable groups buried in extremely hydrophobic microenvironments. The calibrated algorithm was subsequently applied to a fourth mutant of SNase and then to a very large dimeric amine oxidase of 1284 residues, where 334 are titratable. The observed pKa shifts of the buried residues are large (up to 4.7 pK units), and all cases are well reproduced by the calculations with a root mean square error of 0.22. These results support the hypothesis that protein electrostatics can only be described correctly and self-consistently if the inherent heterogeneity of these systems is properly accounted for. © 2002 Wiley-Liss, Inc.
2002
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3365657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 126
  • ???jsp.display-item.citation.isi??? 120
social impact