A comparative study of the pH-dependent redox mechanisms of several members of the cytochrome c3 family has been carried out. In a previous work, the molecular determinants of this dependency (the so-called redox- Bohr effect) were investigated for one species using continuum electrostatic methods to find groups with a titrating range and strength of interaction compatible with a mediating role in the redox-Bohr effect. Here we clarify these aspects in the light of new and improved pK(a) calculations, our findings supporting the hypothesis of propionate D from heme I being the main effector in the pH-dependent modulation of the cytochrome c3 redox potentials in all the c3 molecules studied here. However, the weaker (but significant) role of other titrating groups cannot be excluded, their importance and identity changing with the particular molecule under study. We also calculate the relative redox potentials of the four heme centers among the selected members of the c3 family, using a continuum electrostatic method that takes into account both solvation and interaction effects. Comparison of the calculated values with available data for the microscopic redox potentials was undertaken, the quality of the agreement being dependent upon the choice of the dielectric constant for the protein interior. We find that high dielectric constants give best correlations, while low values result in better magnitudes for the calculated potentials. The possibility that the crystallographic calcium ion in c3 from Desulfovibrio gigas may be present in the solution structure was tested, and found to be likely.

Comparative redox and pK(a) calculations on cytochrome c3 from several Desulfovibrio species using continuum electrostatic methods

Fuxreiter M.;
1999

Abstract

A comparative study of the pH-dependent redox mechanisms of several members of the cytochrome c3 family has been carried out. In a previous work, the molecular determinants of this dependency (the so-called redox- Bohr effect) were investigated for one species using continuum electrostatic methods to find groups with a titrating range and strength of interaction compatible with a mediating role in the redox-Bohr effect. Here we clarify these aspects in the light of new and improved pK(a) calculations, our findings supporting the hypothesis of propionate D from heme I being the main effector in the pH-dependent modulation of the cytochrome c3 redox potentials in all the c3 molecules studied here. However, the weaker (but significant) role of other titrating groups cannot be excluded, their importance and identity changing with the particular molecule under study. We also calculate the relative redox potentials of the four heme centers among the selected members of the c3 family, using a continuum electrostatic method that takes into account both solvation and interaction effects. Comparison of the calculated values with available data for the microscopic redox potentials was undertaken, the quality of the agreement being dependent upon the choice of the dielectric constant for the protein interior. We find that high dielectric constants give best correlations, while low values result in better magnitudes for the calculated potentials. The possibility that the crystallographic calcium ion in c3 from Desulfovibrio gigas may be present in the solution structure was tested, and found to be likely.
1999
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3365671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 45
social impact