Graph property prediction is becoming more and more popular due to the increasing availability of scientific and social data naturally represented in a graph form. Because of that, many researchers are focusing on the development of improved graph neural network models. One of the main components of a graph neural network is the aggregation operator, needed to generate a graph-level representation from a set of node-level embeddings. The aggregation operator is critical since it should, in principle, provide a representation of the graph that is isomorphism invariant, i.e. the graph representation should be a function of graph nodes treated as a set. DeepSets (in: Advances in neural information processing systems, pp 3391–3401, 2017) provides a framework to construct a set-aggregation operator with universal approximation properties. In this paper, we propose a DeepSets aggregation operator, based on Self-Organizing Maps (SOM), to transform a set of node-level representations into a single graph-level one. The adoption of SOMs allows to compute node representations that embed the information about their mutual similarity. Experimental results on several real-world datasets show that our proposed approach achieves improved predictive performance compared to the commonly adopted sum aggregation and many state-of-the-art graph neural network architectures in the literature.

SOM-based aggregation for graph convolutional neural networks

Pasa L.;Navarin N.;Sperduti A.
2020

Abstract

Graph property prediction is becoming more and more popular due to the increasing availability of scientific and social data naturally represented in a graph form. Because of that, many researchers are focusing on the development of improved graph neural network models. One of the main components of a graph neural network is the aggregation operator, needed to generate a graph-level representation from a set of node-level embeddings. The aggregation operator is critical since it should, in principle, provide a representation of the graph that is isomorphism invariant, i.e. the graph representation should be a function of graph nodes treated as a set. DeepSets (in: Advances in neural information processing systems, pp 3391–3401, 2017) provides a framework to construct a set-aggregation operator with universal approximation properties. In this paper, we propose a DeepSets aggregation operator, based on Self-Organizing Maps (SOM), to transform a set of node-level representations into a single graph-level one. The adoption of SOMs allows to compute node representations that embed the information about their mutual similarity. Experimental results on several real-world datasets show that our proposed approach achieves improved predictive performance compared to the commonly adopted sum aggregation and many state-of-the-art graph neural network architectures in the literature.
File in questo prodotto:
File Dimensione Formato  
Pasa2020_Article_SOM-basedAggregationForGraphCo.pdf

accesso aperto

Descrizione: Open access funding provided by Universita` degli Studi di Padova within the CRUI-CARE Agreement
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3366868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact