We compare different notions of curvature on contact sub-Riemannian manifolds. In particular, we introduce canonical curvatures as the coefficients of the sub-Riemannian Jacobi equation. The main result is that all these coefficients are encoded in the asymptotic expansion of the horizontal derivatives of the sub-Riemannian distance. We explicitly compute their expressions in terms of the standard tensors of contact geometry. As an application of these results, we obtain a sub-Riemannian version of the Bonnet–Myers theorem that applies to any contact manifold.

Sub-Riemannian Curvature in Contact Geometry

Barilari D.;
2017

Abstract

We compare different notions of curvature on contact sub-Riemannian manifolds. In particular, we introduce canonical curvatures as the coefficients of the sub-Riemannian Jacobi equation. The main result is that all these coefficients are encoded in the asymptotic expansion of the horizontal derivatives of the sub-Riemannian distance. We explicitly compute their expressions in terms of the standard tensors of contact geometry. As an application of these results, we obtain a sub-Riemannian version of the Bonnet–Myers theorem that applies to any contact manifold.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3368983
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact