The mechanism of reactions with weakly-bound proton-rich nuclei at energies near the Coulomb barrier is a long-standing open question owing to the paucity of experimental data. In this study, a complete kinematics measurement was performed for the proton drip-line nucleus 17F interacting with 58Ni at four energies near the Coulomb barrier. Thanks to the powerful performance of the detector array, exhaustive information on the reaction channels, such as the differential cross sections for quasielastic scattering, exclusive and inclusive breakup, as well as for fusion-evaporation protons and alphas, was derived for the first time. The angular distributions of quasielastic scattering and exclusive breakup can be described reasonably well by the continuum-discretized coupled-channels calculations. The inclusive breakup was investigated using the three-body model proposed by Ichimura, Austern, and Vincent, and results indicate the non-elastic breakup is the dominant component. The total fusion cross sections were determined by the fusion-evaporation protons and alphas. Based on the measured exclusive breakup data, the analysis of the classical dynamical simulation code PLATYPUS demonstrates that the incomplete fusion plays a minor role. Moreover, compared with 16O+58Ni, both the reaction and total fusion cross sections of 17F+58Ni exhibit an enhancement in the sub-barrier energy region, which mainly arises from couplings to the continuum states. This work indicates that the information of full reaction channels is crucially important to comprehensively understand the reaction mechanisms of weakly bound nuclear systems.

Insight into the reaction dynamics of proton drip-line nuclear system 17F+58Ni at near-barrier energies

Mazzocco M.;La Commara M.;Parascandolo C.;Signorini C.;Strano E.;
2021

Abstract

The mechanism of reactions with weakly-bound proton-rich nuclei at energies near the Coulomb barrier is a long-standing open question owing to the paucity of experimental data. In this study, a complete kinematics measurement was performed for the proton drip-line nucleus 17F interacting with 58Ni at four energies near the Coulomb barrier. Thanks to the powerful performance of the detector array, exhaustive information on the reaction channels, such as the differential cross sections for quasielastic scattering, exclusive and inclusive breakup, as well as for fusion-evaporation protons and alphas, was derived for the first time. The angular distributions of quasielastic scattering and exclusive breakup can be described reasonably well by the continuum-discretized coupled-channels calculations. The inclusive breakup was investigated using the three-body model proposed by Ichimura, Austern, and Vincent, and results indicate the non-elastic breakup is the dominant component. The total fusion cross sections were determined by the fusion-evaporation protons and alphas. Based on the measured exclusive breakup data, the analysis of the classical dynamical simulation code PLATYPUS demonstrates that the incomplete fusion plays a minor role. Moreover, compared with 16O+58Ni, both the reaction and total fusion cross sections of 17F+58Ni exhibit an enhancement in the sub-barrier energy region, which mainly arises from couplings to the continuum states. This work indicates that the information of full reaction channels is crucially important to comprehensively understand the reaction mechanisms of weakly bound nuclear systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3380446
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact