Recovery of soil fertility after de-sealing of urban soils is still poorly known. This work studied the time-related dynamics of soil physico-chemical and biochemical endpoints of urban soil in the city in Naples (Southern Italy), de-sealed for different time during construction works, that underwent colonization by volunteer plants. The results showed de-sealing decreased the soil bulk density and the soil pH value, increased the electrical conductivity (EC), total organic C (TOC) and extractable carbohydrates (TEC), total and inorganic N contents, soil basal respiration (SBR), soil microbial biomass C (MBC) and soil microbial biomass N (MBN), the substrate induced respiration (SIR) value, and enzyme activities involved in C, N, P and S mineralization. The TEC, total and inorganic N, SBR and microbial biochemical endpoints were higher in the de-sealed soils than those of an arable soil of the same area. The results show that de-sealed urban soils rapidly increase their physical, chemical and biological fertility even with no intervention, especially when they are colonized by volunteer plants.

Evolution of physico-chemical properties, microbial biomass and microbial activity of an urban soil after de-sealing

Renella G.
Conceptualization
2020

Abstract

Recovery of soil fertility after de-sealing of urban soils is still poorly known. This work studied the time-related dynamics of soil physico-chemical and biochemical endpoints of urban soil in the city in Naples (Southern Italy), de-sealed for different time during construction works, that underwent colonization by volunteer plants. The results showed de-sealing decreased the soil bulk density and the soil pH value, increased the electrical conductivity (EC), total organic C (TOC) and extractable carbohydrates (TEC), total and inorganic N contents, soil basal respiration (SBR), soil microbial biomass C (MBC) and soil microbial biomass N (MBN), the substrate induced respiration (SIR) value, and enzyme activities involved in C, N, P and S mineralization. The TEC, total and inorganic N, SBR and microbial biochemical endpoints were higher in the de-sealed soils than those of an arable soil of the same area. The results show that de-sealed urban soils rapidly increase their physical, chemical and biological fertility even with no intervention, especially when they are colonized by volunteer plants.
2020
File in questo prodotto:
File Dimensione Formato  
Evolution of physico-chemical properties, microbial biomass and microbial activity of an urban soil after de-sealing.pdf

accesso aperto

Descrizione: Evolution of physico-chemical properties, microbial biomass and microbial activity of an urban soil after de-sealing
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 461.53 kB
Formato Adobe PDF
461.53 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3380708
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact