Though suggested by international conventions for a long time, there are still several technical and legislative limitations to a complete reuse and recycling of dredged sediments. In particular, reuse of unpolluted sediments can be practiced, whereas sediment recycling is still affected by several downsides, and a significant proportion of the recycled fine sediments has no practical use and must be landfilled. However, the silty clayey fraction of the recycled sediments is rich in organic matter and macro-and micronutrients useful for plant growth. Nevertheless, sediment recycling in agriculture is not possible, even in non-food agricultural sectors, due to the lack of a permissive legislation and of consolidated supply chains. In addition to plant nutrients, the silty-clay sediment fraction may also accumulate organic and inorganic pollutants, and while the organic pollutants can be effectively biodegraded, metals and metalloids may concentrate at concentrations higher than the limits set by the environmental and agricultural legislations. In this paper, I briefly summarize the scientific evidence on the potential reuse and recycling of sediments in agriculture, and I discuss the main reasons for hindrance of sediment recycling in agriculture. I also present evidence from a real industrial biodegradation process that produces bioremediated fine sediment fractions with suitable properties as a mineral ingredient for plant-growing media. I propose that nutrient-rich recycled sediments could be reconsidered as a component material category in the new EU regulation on fertilizers.

Recycling and reuse of sediments in agriculture: Where is the problem?

Renella G.
Conceptualization
2021

Abstract

Though suggested by international conventions for a long time, there are still several technical and legislative limitations to a complete reuse and recycling of dredged sediments. In particular, reuse of unpolluted sediments can be practiced, whereas sediment recycling is still affected by several downsides, and a significant proportion of the recycled fine sediments has no practical use and must be landfilled. However, the silty clayey fraction of the recycled sediments is rich in organic matter and macro-and micronutrients useful for plant growth. Nevertheless, sediment recycling in agriculture is not possible, even in non-food agricultural sectors, due to the lack of a permissive legislation and of consolidated supply chains. In addition to plant nutrients, the silty-clay sediment fraction may also accumulate organic and inorganic pollutants, and while the organic pollutants can be effectively biodegraded, metals and metalloids may concentrate at concentrations higher than the limits set by the environmental and agricultural legislations. In this paper, I briefly summarize the scientific evidence on the potential reuse and recycling of sediments in agriculture, and I discuss the main reasons for hindrance of sediment recycling in agriculture. I also present evidence from a real industrial biodegradation process that produces bioremediated fine sediment fractions with suitable properties as a mineral ingredient for plant-growing media. I propose that nutrient-rich recycled sediments could be reconsidered as a component material category in the new EU regulation on fertilizers.
2021
File in questo prodotto:
File Dimensione Formato  
Recycling and Reuse of Sediments in Agriculture - Where is the Problem.pdf

accesso aperto

Descrizione: Recycling and Reuse of Sediments in Agriculture - Where is the Problem
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 275.09 kB
Formato Adobe PDF
275.09 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3380718
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 36
social impact