Excitotoxicity is likely to occur in pathological scenarios in which mitochondrial function is already compromised, shaping neuronal responses to glutamate. In fact, mitochondria sustain cell bioenergetics, tune intracellular Ca2+ dynamics, and regulate glutamate availability by using it as metabolic substrate. Here, we suggest the need to explore glutamate toxicity in the context of specific disease models in which it may occur, re-evaluating the impact of mitochondrial dysfunction on glutamate excitotoxicity. Our aim is to signpost new approaches, perhaps combining glutamate and pathways to rescue mitochondrial function, as therapeutic targets in neurological disorders.

Excitotoxicity Revisited: Mitochondria on the Verge of a Nervous Breakdown

Plotegher, Nicoletta;Filadi, Riccardo;Pizzo, Paola;
2021

Abstract

Excitotoxicity is likely to occur in pathological scenarios in which mitochondrial function is already compromised, shaping neuronal responses to glutamate. In fact, mitochondria sustain cell bioenergetics, tune intracellular Ca2+ dynamics, and regulate glutamate availability by using it as metabolic substrate. Here, we suggest the need to explore glutamate toxicity in the context of specific disease models in which it may occur, re-evaluating the impact of mitochondrial dysfunction on glutamate excitotoxicity. Our aim is to signpost new approaches, perhaps combining glutamate and pathways to rescue mitochondrial function, as therapeutic targets in neurological disorders.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3381051
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact