Cebranopadol is a mixed NOP/opioid receptor agonist currently under development as innovative analgesic. In this study the liability of cebranopadol to produce opioid-type physical dependence has been evaluated in comparison with morphine in wild type mice and in mice knockout for the NOP receptor gene (NOP(-/-)). Mice were treated twice a day for 5 days with increasing doses of cebranopadol or morphine (cumulative doses 10.2 and 255 mg/kg, respectively) and the number of jumping in response to naloxone 10 mg/kg were measured after 2 h from the last injection. In wild type mice naloxone evoked a similar withdrawal jumping behavior in animal pretreated with morphine or cebranopadol. In NOP(-/-) mice morphine treatment produced the same signs of withdrawal as in NOP(+/+) animals, while cebranopadol treatment elicited a stronger withdrawal syndrome in NOP(-/-) than of NOP(+/+) mice. These results demonstrated that the activation of the NOP receptor reduces the liability of cebranopadol to produce opioid-like physical dependence. Thus, the simultaneous activation of NOP and opioid receptors can be an effective pharmacological strategy to counteract physical dependence to opioid drugs.

NOP agonist action of cebranopadol counteracts its liability to promote physical dependence

Calo, Girolamo
2019

Abstract

Cebranopadol is a mixed NOP/opioid receptor agonist currently under development as innovative analgesic. In this study the liability of cebranopadol to produce opioid-type physical dependence has been evaluated in comparison with morphine in wild type mice and in mice knockout for the NOP receptor gene (NOP(-/-)). Mice were treated twice a day for 5 days with increasing doses of cebranopadol or morphine (cumulative doses 10.2 and 255 mg/kg, respectively) and the number of jumping in response to naloxone 10 mg/kg were measured after 2 h from the last injection. In wild type mice naloxone evoked a similar withdrawal jumping behavior in animal pretreated with morphine or cebranopadol. In NOP(-/-) mice morphine treatment produced the same signs of withdrawal as in NOP(+/+) animals, while cebranopadol treatment elicited a stronger withdrawal syndrome in NOP(-/-) than of NOP(+/+) mice. These results demonstrated that the activation of the NOP receptor reduces the liability of cebranopadol to produce opioid-like physical dependence. Thus, the simultaneous activation of NOP and opioid receptors can be an effective pharmacological strategy to counteract physical dependence to opioid drugs.
2019
File in questo prodotto:
File Dimensione Formato  
Ruzza cebra 2019.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 497.13 kB
Formato Adobe PDF
497.13 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3386351
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact