The hallmark of the PhotoVoltaic (PV) electricity generation is its sustainability, while its main weakness is the low conversion efficiency. A drawback to which is added the PV cell sensitivity to temperature variations: the higher the cell operating temperature, the lower the efficiency. Considering that in-operation modules reach a conversion efficiency in the range of 10 to 15%, there is an urgent need to control their temperature to enhance the electricity generation. To this purpose, the authors developed a PV spraying cooling system able to drastically knockdown modules operating temperature. Using experimental measurements acquired through a dedicated test rig and after an in-depth literature review, the authors analyze the nozzles number, geometry, and position, as well as water and module’s temperature distribution, limestones formation, degradation of front glass properties, water consumption, and module power production with and without the cooling system. The experimental campaign shows that a cooling system equipped with three nozzles with a spraying angle of 90°, powered by water at 1.5 bar and managed in ON/OFF mode (30 s on to 180 s off), can improve the module’s efficiency from 11.18% to 13.27% thanks to a temperature reduction of up to 24 °C. Despite the improvement in electricity production (from 178.88 W to 212.31 W per single module), at the time of writing, the equipment and installation costs as well as the plant arrangement complexity make the investment not eligible for financing also in the case of a 1 MW floating PV facilities.

Spraying Cooling System for PV Modules: Experimental Measurements for Temperature Trends Assessment and System Design Feasibility

Benato, Alberto
;
Stoppato, Anna;De Vanna, Francesco;Schiro, Fabio
2021

Abstract

The hallmark of the PhotoVoltaic (PV) electricity generation is its sustainability, while its main weakness is the low conversion efficiency. A drawback to which is added the PV cell sensitivity to temperature variations: the higher the cell operating temperature, the lower the efficiency. Considering that in-operation modules reach a conversion efficiency in the range of 10 to 15%, there is an urgent need to control their temperature to enhance the electricity generation. To this purpose, the authors developed a PV spraying cooling system able to drastically knockdown modules operating temperature. Using experimental measurements acquired through a dedicated test rig and after an in-depth literature review, the authors analyze the nozzles number, geometry, and position, as well as water and module’s temperature distribution, limestones formation, degradation of front glass properties, water consumption, and module power production with and without the cooling system. The experimental campaign shows that a cooling system equipped with three nozzles with a spraying angle of 90°, powered by water at 1.5 bar and managed in ON/OFF mode (30 s on to 180 s off), can improve the module’s efficiency from 11.18% to 13.27% thanks to a temperature reduction of up to 24 °C. Despite the improvement in electricity production (from 178.88 W to 212.31 W per single module), at the time of writing, the equipment and installation costs as well as the plant arrangement complexity make the investment not eligible for financing also in the case of a 1 MW floating PV facilities.
2021
File in questo prodotto:
File Dimensione Formato  
designs-05-00025.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 17.14 MB
Formato Adobe PDF
17.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3387513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact