Non-symbolic numerical abilities are widespread among vertebrates due to their important adaptive value. Moreover, these abilities were considered peculiar of vertebrate species as numerical competence is regarded as cognitively sophisticated. However, recent evidence convincingly showed that this is not the case: invertebrates, with their limited number of neurons, proved able to successfully discriminate different quantities (e.g., of prey), to use the ordinal property of numbers, to solve arithmetic operations as addition and subtraction and even to master the concept of zero numerosity. To date, though, the debate is still open on the presence and the nature of a «sense of number» in invertebrates. Whether this is peculiar for discrete countable quantities (numerosities) or whether this is part of a more general magnitude system dealing with both discrete and continuous quantities, as hypothesized for humans and other vertebrates. Here we reviewed the main studies on numerical abilities of invertebrates, discussing in particular the recent findings supporting the hypothesis of a general mechanism that allows for processing of both discrete (i.e., number) and continuous dimensions (e.g., space).

A sense of number in invertebrates

Regolin L.;
2020

Abstract

Non-symbolic numerical abilities are widespread among vertebrates due to their important adaptive value. Moreover, these abilities were considered peculiar of vertebrate species as numerical competence is regarded as cognitively sophisticated. However, recent evidence convincingly showed that this is not the case: invertebrates, with their limited number of neurons, proved able to successfully discriminate different quantities (e.g., of prey), to use the ordinal property of numbers, to solve arithmetic operations as addition and subtraction and even to master the concept of zero numerosity. To date, though, the debate is still open on the presence and the nature of a «sense of number» in invertebrates. Whether this is peculiar for discrete countable quantities (numerosities) or whether this is part of a more general magnitude system dealing with both discrete and continuous quantities, as hypothesized for humans and other vertebrates. Here we reviewed the main studies on numerical abilities of invertebrates, discussing in particular the recent findings supporting the hypothesis of a general mechanism that allows for processing of both discrete (i.e., number) and continuous dimensions (e.g., space).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3389787
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 34
social impact