Nature uses non-covalent interactions to achieve structural dynamic reconfiguration of biopolymers. Taking advantage of the programmability of DNA/DNA interactions we report here the rational design of orthogonal DNA-based addressable tiles that self-assemble into polymer-like structures that can be reconfigured by external inputs. The different tiles share the same sticky ends responsible for self-assembly but are rationally designed to contain a specific regulator-binding domain that can be orthogonally targeted by different DNA regulator strands. We show that by sequentially adding specific inputs it is possible to re-organize the formed structures to display well-defined distributions: homopolymers, random and block structures. The versatility of the systems presented in this study shows the ease with which DNA-based addressable monomers can be designed to create reconfigurable micron-scale DNA structures offering a new approach to the growing field of supramolecular polymers.

Reorganization of Self-Assembled DNA-Based Polymers using Orthogonally Addressable Building Blocks**

Prins L. J.;
2021

Abstract

Nature uses non-covalent interactions to achieve structural dynamic reconfiguration of biopolymers. Taking advantage of the programmability of DNA/DNA interactions we report here the rational design of orthogonal DNA-based addressable tiles that self-assemble into polymer-like structures that can be reconfigured by external inputs. The different tiles share the same sticky ends responsible for self-assembly but are rationally designed to contain a specific regulator-binding domain that can be orthogonally targeted by different DNA regulator strands. We show that by sequentially adding specific inputs it is possible to re-organize the formed structures to display well-defined distributions: homopolymers, random and block structures. The versatility of the systems presented in this study shows the ease with which DNA-based addressable monomers can be designed to create reconfigurable micron-scale DNA structures offering a new approach to the growing field of supramolecular polymers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3390423
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact