By means of Mn-Cu transmetalation, we incorporated Mn atoms in an array of TCNQ (7,7,8,8-tetracyanoquinodimethane) grown on Cu(100), forming a long range ordered and commensurate metal–organic coordination network (MOCN). Preliminary Sn alloying of the Cu(100) surface allowed us to control the degree of substrate reactivity, thus preventing the chemical interaction of the Mn-TCNQ MOCN with the substrate. Mn2+ ions are stabilized in an artificial tetra-pyrrolic coordination, which mimics the macrocyle configuration of Mn-phthalocyanines/porphyrins. X-ray absorption spectroscopy at the Mn L2,3-edge indicates that the Mn ions are in a high-spin state (S = 5/2), in agreement with DFT + U calculations which also shows that the electronic structure of this Mn-TCNQ MOCN is very similar to that of the corresponding unsupported MOCN.
Stabilization of high-spin Mn ions in tetra-pyrrolic configuration on copper
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Carlotto S.Investigation
;Casarin M.Writing – Review & Editing
;
	
		
		
	
			2021
Abstract
By means of Mn-Cu transmetalation, we incorporated Mn atoms in an array of TCNQ (7,7,8,8-tetracyanoquinodimethane) grown on Cu(100), forming a long range ordered and commensurate metal–organic coordination network (MOCN). Preliminary Sn alloying of the Cu(100) surface allowed us to control the degree of substrate reactivity, thus preventing the chemical interaction of the Mn-TCNQ MOCN with the substrate. Mn2+ ions are stabilized in an artificial tetra-pyrrolic coordination, which mimics the macrocyle configuration of Mn-phthalocyanines/porphyrins. X-ray absorption spectroscopy at the Mn L2,3-edge indicates that the Mn ions are in a high-spin state (S = 5/2), in agreement with DFT + U calculations which also shows that the electronic structure of this Mn-TCNQ MOCN is very similar to that of the corresponding unsupported MOCN.| File | Dimensione | Formato | |
|---|---|---|---|
| 1-s2.0-S0169433221003834-main.pdf Accesso riservato 
											Descrizione: articolo principale
										 
											Tipologia:
											Published (Publisher's Version of Record)
										 
											Licenza:
											
											
												Accesso privato - non pubblico
												
												
												
											
										 
										Dimensione
										3.34 MB
									 
										Formato
										Adobe PDF
									 | 3.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| 2991587_MnTetraPyrrol_AppSurfSci_2021-Post_print.pdf accesso aperto 
											Tipologia:
											Preprint (AM - Author's Manuscript - submitted)
										 
											Licenza:
											
											
												Altro
												
												
												
											
										 
										Dimensione
										3.73 MB
									 
										Formato
										Adobe PDF
									 | 3.73 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




