Farmer's management decisions and environmental factors are the main drivers for field spatial and temporal yield variability. In this study, a 22 ha field cultivated with corn for more than ten years using different prescription maps of nitrogen application rates was investigated. Prescription maps were developed based on archived yield maps, soil analysis and recently integrated with Sentinel 2 satellite images. In addition, farmer experience and availability of variable rate application (VRA) requirements had an influence on the development of the homogeneous management zones. The initial approach with VRA was quite simple, based on a simple partitioning of the field into three rectangular zones (defined mainly based on previous yield maps and farmer experience). The partitioning changed with time and knowledge, evolving to the final five irregularly shaped zones (defined based on Farm works decision support software). Furthermore, since 2010 the farmer began using soil moisture sensor for irrigation decisions. Results of the present study highlight an improvement in corn yield and a reduction in total applied nitrogen. Corn yield improved on average by 31% on a ten years basis to reach more than 14 ton/ha dm. in 2018. At the beginning of VRA, yield maps showed a high spatial variation between field zones compared to reduced variation in the following seasons. In addition, the nitrogen applied reduced by around 23% while the total yield was improving. These results showed an increase in the partial factor productivity from less than 54 to around 87 kg of corn grain per kg of nitrogen applied. This promising result shows that farmer management decisions can improve every season by continuous monitoring of crop performance, understanding field variability and taking advantage of recently developed decision support software tools.

Ten years of corn yield dynamics at field scale under digital agriculture solutions: A case study from North Italy

Kayad A.;Sozzi M.;Gatto S.;Sartori L.;Marinello F.
2021

Abstract

Farmer's management decisions and environmental factors are the main drivers for field spatial and temporal yield variability. In this study, a 22 ha field cultivated with corn for more than ten years using different prescription maps of nitrogen application rates was investigated. Prescription maps were developed based on archived yield maps, soil analysis and recently integrated with Sentinel 2 satellite images. In addition, farmer experience and availability of variable rate application (VRA) requirements had an influence on the development of the homogeneous management zones. The initial approach with VRA was quite simple, based on a simple partitioning of the field into three rectangular zones (defined mainly based on previous yield maps and farmer experience). The partitioning changed with time and knowledge, evolving to the final five irregularly shaped zones (defined based on Farm works decision support software). Furthermore, since 2010 the farmer began using soil moisture sensor for irrigation decisions. Results of the present study highlight an improvement in corn yield and a reduction in total applied nitrogen. Corn yield improved on average by 31% on a ten years basis to reach more than 14 ton/ha dm. in 2018. At the beginning of VRA, yield maps showed a high spatial variation between field zones compared to reduced variation in the following seasons. In addition, the nitrogen applied reduced by around 23% while the total yield was improving. These results showed an increase in the partial factor productivity from less than 54 to around 87 kg of corn grain per kg of nitrogen applied. This promising result shows that farmer management decisions can improve every season by continuous monitoring of crop performance, understanding field variability and taking advantage of recently developed decision support software tools.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3391222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 34
social impact