Erwin Schrödinger posed—and to a large extent solved—in 1931/32 the problem of finding the most likely random evolution between two continuous probability distributions. This article considers this problem in the case when only samples of the two distributions are available. A novel iterative procedure is proposed, inspired by Fortet-IPF-Sinkhorn type algorithms. Since only samples of the marginals are available, the new approach features constrained maximum likelihood estimation in place of the nonlinear boundary couplings, and importance sampling to propagate the functions ϕ and (Formula presented.) solving the Schrödinger system. This method mitigates the curse of dimensionality, compared to the introduction of grids, which in high dimensions lead to numerically unfeasible methods. The methodology is illustrated in two applications: entropic interpolation of two-dimensional Gaussian mixtures, and the estimation of integrals through a variation of importance sampling. © 2020 Wiley Periodicals LLC.

The Data-Driven Schrödinger Bridge

Pavon M.;
2021

Abstract

Erwin Schrödinger posed—and to a large extent solved—in 1931/32 the problem of finding the most likely random evolution between two continuous probability distributions. This article considers this problem in the case when only samples of the two distributions are available. A novel iterative procedure is proposed, inspired by Fortet-IPF-Sinkhorn type algorithms. Since only samples of the marginals are available, the new approach features constrained maximum likelihood estimation in place of the nonlinear boundary couplings, and importance sampling to propagate the functions ϕ and (Formula presented.) solving the Schrödinger system. This method mitigates the curse of dimensionality, compared to the introduction of grids, which in high dimensions lead to numerically unfeasible methods. The methodology is illustrated in two applications: entropic interpolation of two-dimensional Gaussian mixtures, and the estimation of integrals through a variation of importance sampling. © 2020 Wiley Periodicals LLC.
File in questo prodotto:
File Dimensione Formato  
Pavon_Tabak_Trigila_CPAM.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 787.53 kB
Formato Adobe PDF
787.53 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3391268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact