Mm-wave radars have recently gathered significant attention as a means to track human movement and identify subjects from their gait characteristics. A widely adopted method to perform the identification is the extraction of the micro-Doppler signature of the targets, which is computationally demanding in case of co-existing multiple targets within the monitored physical space. Such computational complexity is the main problem of state-of-the-art approaches, and makes them inapt for real-time use. In this work, we present an end-to-end, low-complexity but highly accurate method to track and identify multiple subjects in real-time using the sparse point-cloud sequences obtained from a low-cost mm-wave radar. Our proposed system features an extended object tracking Kalman filter, used to estimate the position, shape and extension of the subjects, which is integrated with a novel deep learning classifier, specifically tailored for effective feature extraction and fast inference on radar point-clouds. The proposed method is thoroughly evaluated on an edge-computing platform from NVIDIA (Jetson series), obtaining greatly reduced execution times (reduced complexity) against the best approaches from the literature. Specifically, it achieves accuracies as high as 91.62%, operating at 15 frames per seconds, in identifying three subjects that concurrently and freely move in an unseen indoor environment, among a group of eight.

Real-Time People Tracking and Identification From Sparse mm-Wave Radar Point-Clouds

Pegoraro, Jacopo
Investigation
;
Rossi, Michele
Investigation
2021

Abstract

Mm-wave radars have recently gathered significant attention as a means to track human movement and identify subjects from their gait characteristics. A widely adopted method to perform the identification is the extraction of the micro-Doppler signature of the targets, which is computationally demanding in case of co-existing multiple targets within the monitored physical space. Such computational complexity is the main problem of state-of-the-art approaches, and makes them inapt for real-time use. In this work, we present an end-to-end, low-complexity but highly accurate method to track and identify multiple subjects in real-time using the sparse point-cloud sequences obtained from a low-cost mm-wave radar. Our proposed system features an extended object tracking Kalman filter, used to estimate the position, shape and extension of the subjects, which is integrated with a novel deep learning classifier, specifically tailored for effective feature extraction and fast inference on radar point-clouds. The proposed method is thoroughly evaluated on an edge-computing platform from NVIDIA (Jetson series), obtaining greatly reduced execution times (reduced complexity) against the best approaches from the literature. Specifically, it achieves accuracies as high as 91.62%, operating at 15 frames per seconds, in identifying three subjects that concurrently and freely move in an unseen indoor environment, among a group of eight.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3391507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 23
social impact