Lubrication within articular joints plays a crucial role in daily life, providing an extremely low coefficient of friction and preventing wear at the surface of the articular cartilage. Natural biomacromolecules responsible for lubrication are part of the synovial fluid and their degradation is associated with the onset of degenerative diseases, such as osteoarthritis (OA). The current absence of effective treatments for OA has captured the attention of chemists and material scientists over the last two decades, triggering the development of partially or fully synthetic biolubricants aimed to reduce friction within the joints and restore cartilage functions. Although there is still a long way to go before synthetic replacements of natural biolubricants can be applied clinically, this review highlights those formulations that meet the fundamental requirements for being efficient lubricants for articular cartilage.

Molecularly Engineered Biolubricants for Articular Cartilage

Benetti E;
2018

Abstract

Lubrication within articular joints plays a crucial role in daily life, providing an extremely low coefficient of friction and preventing wear at the surface of the articular cartilage. Natural biomacromolecules responsible for lubrication are part of the synovial fluid and their degradation is associated with the onset of degenerative diseases, such as osteoarthritis (OA). The current absence of effective treatments for OA has captured the attention of chemists and material scientists over the last two decades, triggering the development of partially or fully synthetic biolubricants aimed to reduce friction within the joints and restore cartilage functions. Although there is still a long way to go before synthetic replacements of natural biolubricants can be applied clinically, this review highlights those formulations that meet the fundamental requirements for being efficient lubricants for articular cartilage.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3394555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 38
social impact