Bilayer polymer brushes presenting surface-bound poly(glycidyl methacrylate) (PGMA) films and interfacial cyclic poly(2-alkyl-2-oxazoline) (PAOXA) brushes show excellent biopassivity and lubrication, while displaying long-term stability in chemically harsh aqueous environments. Due to their lower radii of gyration (R-g), cyclic poly(2-methyl-2-oxazoline)s (PMOXAs) and poly(2-ethyl-2-oxazoline)s (PEOXAs) react at high temperatures with PGMA grafts producing similar to 50% denser brushes compared to linear analogues featuring comparable molar masses. This generates significantly more hydrated brush interfaces, which quantitatively prevent unspecific surface contamination by biomolecules after several hours of exposure. In addition, the more compact and denser character of cyclic brushes imparts excellent lubricating properties to the bilayered coatings, with the more hydrophilic cyclic PMOXA interfaces reaching a coefficient of friction (mu) of 0.05 against a silica AFM probe in aqueous medium. In addition to their unique physico-chemical properties, cyclic PMOXA and PEOXA brushes grafted on PGMA layers demonstrate extremely robust films, which could withstand one month incubation in phosphate buffered saline (PBS) solution, tap water or water from Lake Zurich.

Design and characterization of ultrastable, biopassive and lubricious cyclic poly(2-alkyl-2-oxazoline) brushes

Benetti E
2018

Abstract

Bilayer polymer brushes presenting surface-bound poly(glycidyl methacrylate) (PGMA) films and interfacial cyclic poly(2-alkyl-2-oxazoline) (PAOXA) brushes show excellent biopassivity and lubrication, while displaying long-term stability in chemically harsh aqueous environments. Due to their lower radii of gyration (R-g), cyclic poly(2-methyl-2-oxazoline)s (PMOXAs) and poly(2-ethyl-2-oxazoline)s (PEOXAs) react at high temperatures with PGMA grafts producing similar to 50% denser brushes compared to linear analogues featuring comparable molar masses. This generates significantly more hydrated brush interfaces, which quantitatively prevent unspecific surface contamination by biomolecules after several hours of exposure. In addition, the more compact and denser character of cyclic brushes imparts excellent lubricating properties to the bilayered coatings, with the more hydrophilic cyclic PMOXA interfaces reaching a coefficient of friction (mu) of 0.05 against a silica AFM probe in aqueous medium. In addition to their unique physico-chemical properties, cyclic PMOXA and PEOXA brushes grafted on PGMA layers demonstrate extremely robust films, which could withstand one month incubation in phosphate buffered saline (PBS) solution, tap water or water from Lake Zurich.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3394587
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 52
social impact