Control methods based on sEMG obtained promising results for hand prosthetics. Control system robustness is still often inadequate and does not allow the amputees to perform a large number of movements useful for everyday life. Only few studies analyzed the repeatability of sEMG classification of hand grasps. The main goals of this paper are to explore repeatability in sEMG data and to release a repeatability database with the recorded experiments. The data are recorded from 10 intact subjects repeating 7 grasps 12 times, twice a day for 5 days. The data are publicly available on the Ninapro web page. The analysis for the repeatability is based on the comparison of movement classification accuracy in several data acquisitions and for different subjects. The analysis is performed using mean absolute value and waveform length features and a Random Forest classifier. The accuracy obtained by training and testing on acquisitions at different times is on average 27.03% lower than training and testing on the same acquisition. The results obtained by training and testing on different acquisitions suggest that previous acquisitions can be used to train the classification algorithms. The inter-subject variability is remarkable, suggesting that specific characteristics of the subjects can affect repeatibility and sEMG classification accuracy. In conclusion, the results of this paper can contribute to develop more robust control systems for hand prostheses, while the presented data allows researchers to test repeatability in further analyses.

Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data

Atzori M.
2017

Abstract

Control methods based on sEMG obtained promising results for hand prosthetics. Control system robustness is still often inadequate and does not allow the amputees to perform a large number of movements useful for everyday life. Only few studies analyzed the repeatability of sEMG classification of hand grasps. The main goals of this paper are to explore repeatability in sEMG data and to release a repeatability database with the recorded experiments. The data are recorded from 10 intact subjects repeating 7 grasps 12 times, twice a day for 5 days. The data are publicly available on the Ninapro web page. The analysis for the repeatability is based on the comparison of movement classification accuracy in several data acquisitions and for different subjects. The analysis is performed using mean absolute value and waveform length features and a Random Forest classifier. The accuracy obtained by training and testing on acquisitions at different times is on average 27.03% lower than training and testing on the same acquisition. The results obtained by training and testing on different acquisitions suggest that previous acquisitions can be used to train the classification algorithms. The inter-subject variability is remarkable, suggesting that specific characteristics of the subjects can affect repeatibility and sEMG classification accuracy. In conclusion, the results of this paper can contribute to develop more robust control systems for hand prostheses, while the presented data allows researchers to test repeatability in further analyses.
2017
IEEE International Conference on Rehabilitation Robotics
978-1-5386-2296-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3394631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 60
social impact