Medulloblastoma (MB) is a type of brain cancer that represent roughly 25% of all brain tumors in children. In the anaplastic medulloblastoma subtype, it is important to identify the degree of irregularity and lack of organizations of cells as this correlates to disease aggressiveness and is of clinical value when evaluating patient prognosis. This paper presents an image representation to distinguish these subtypes in histopathology slides. The approach combines learned features from (i) an unsupervised feature learning method using topographic independent component analysis that captures scale, color and translation invariances, and (ii) learned linear combinations of Riesz wavelets calculated at several orders and scales capturing the granularity of multiscale rotation-covariant information. The contribution of this work is to show that the combination of two complementary approaches for feature learning (unsupervised and supervised) improves the classification performance. Our approach outperforms the best methods in literature with statistical significance, achieving 99% accuracy over region-based data comprising 7,500 square regions from 10 patient studies diagnosed with medulloblastoma (5 anaplastic and 5 non-anaplastic).

Combining unsupervised feature learning and riesz wavelets for histopathology image representation: Application to identifying anaplastic medulloblastoma

Atzori M.;
2015

Abstract

Medulloblastoma (MB) is a type of brain cancer that represent roughly 25% of all brain tumors in children. In the anaplastic medulloblastoma subtype, it is important to identify the degree of irregularity and lack of organizations of cells as this correlates to disease aggressiveness and is of clinical value when evaluating patient prognosis. This paper presents an image representation to distinguish these subtypes in histopathology slides. The approach combines learned features from (i) an unsupervised feature learning method using topographic independent component analysis that captures scale, color and translation invariances, and (ii) learned linear combinations of Riesz wavelets calculated at several orders and scales capturing the granularity of multiscale rotation-covariant information. The contribution of this work is to show that the combination of two complementary approaches for feature learning (unsupervised and supervised) improves the classification performance. Our approach outperforms the best methods in literature with statistical significance, achieving 99% accuracy over region-based data comprising 7,500 square regions from 10 patient studies diagnosed with medulloblastoma (5 anaplastic and 5 non-anaplastic).
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
978-3-319-24552-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3394654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact