In this work, we propose a deep learning system for weakly supervised object detection in digital pathology whole slide images. We designed the system to be organ- and object-agnostic, and to be adapted on-the-fly to detect novel objects based on a few examples provided by the user. We tested our method on detection of healthy glands in colon biopsies and ductal carcinoma in situ (DCIS) of the breast, showing that (1) the same system is capable of adapting to detect requested objects with high accuracy, namely 87% accuracy assessed on 582 detections in colon tissue, and 93% accuracy assessed on 163 DCIS detections in breast tissue; (2) in some settings, the system is capable of retrieving similar cases with little to none false positives (i.e., precision equal to 1.00); (3) the performance of the system can benefit from previously detected objects with high confidence that can be reused in new searches in an iterative fashion.

Few-shot weakly supervised detection and retrieval in histopathology whole-slide images

Atzori M.;
2021

Abstract

In this work, we propose a deep learning system for weakly supervised object detection in digital pathology whole slide images. We designed the system to be organ- and object-agnostic, and to be adapted on-the-fly to detect novel objects based on a few examples provided by the user. We tested our method on detection of healthy glands in colon biopsies and ductal carcinoma in situ (DCIS) of the breast, showing that (1) the same system is capable of adapting to detect requested objects with high accuracy, namely 87% accuracy assessed on 582 detections in colon tissue, and 93% accuracy assessed on 163 DCIS detections in breast tissue; (2) in some settings, the system is capable of retrieving similar cases with little to none false positives (i.e., precision equal to 1.00); (3) the performance of the system can benefit from previously detected objects with high confidence that can be reused in new searches in an iterative fashion.
2021
Progress in Biomedical Optics and Imaging - Proceedings of SPIE
Medical Imaging 2021: Digital Pathology
9781510640351
9781510640368
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3394657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact