According to the dimensional approach to psychosis, there is a continuum from low schizotypy to schizophrenia patients. The temporal aspect of sensory processing seems to be compromised across such continuum, as suggested by different studies separately investigating unisensory or multisensory domains. Most of these studies have so far focused primarily on the temporal processing of visual and auditory stimuli, either in schizotypy or schizophrenia, while leaving the tactile domain and the integration of touch with other senses mostly unexplored. Given the relevance of body-related perceptual abnormalities for psychosis proneness, we aimed at filling this gap in the literature across two studies. We asked participants with increasing levels of schizotypy (study 1) and schizophrenia patients (study 2) to perform three simultaneity judgement tasks: a unimodal tactile task, a unimodal auditory task and a bimodal audio-tactile task. Each task allowed estimating a simultaneity range (SR), as a proxy of the individual tolerance to asynchronies in the tactile, auditory and audio-tactile domains, respectively. Results showed larger SRs as the level of schizotypy increases. Specifically, the linear effect of schizotypy levels on the audio-tactile task was stronger than on the auditory task, which in turn was greater than the effect on the tactile task (study 1). Differently, schizophrenia patients showed larger SRs than controls in all the three tasks (study 2). The current study is the first empirical investigation across the continuum from low schizotypy to schizophrenia of the tolerance to asynchronies in the processing of external (auditory) and body-related (tactile) inputs.

Body-environment integration: Temporal processing of tactile and auditory inputs along the schizophrenia continuum

Ambrosini E.;
2021

Abstract

According to the dimensional approach to psychosis, there is a continuum from low schizotypy to schizophrenia patients. The temporal aspect of sensory processing seems to be compromised across such continuum, as suggested by different studies separately investigating unisensory or multisensory domains. Most of these studies have so far focused primarily on the temporal processing of visual and auditory stimuli, either in schizotypy or schizophrenia, while leaving the tactile domain and the integration of touch with other senses mostly unexplored. Given the relevance of body-related perceptual abnormalities for psychosis proneness, we aimed at filling this gap in the literature across two studies. We asked participants with increasing levels of schizotypy (study 1) and schizophrenia patients (study 2) to perform three simultaneity judgement tasks: a unimodal tactile task, a unimodal auditory task and a bimodal audio-tactile task. Each task allowed estimating a simultaneity range (SR), as a proxy of the individual tolerance to asynchronies in the tactile, auditory and audio-tactile domains, respectively. Results showed larger SRs as the level of schizotypy increases. Specifically, the linear effect of schizotypy levels on the audio-tactile task was stronger than on the auditory task, which in turn was greater than the effect on the tactile task (study 1). Differently, schizophrenia patients showed larger SRs than controls in all the three tasks (study 2). The current study is the first empirical investigation across the continuum from low schizotypy to schizophrenia of the tolerance to asynchronies in the processing of external (auditory) and body-related (tactile) inputs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3394777
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact