The main aim of this work was to evaluate the efficiency of producing caproic acid and other volatile fatty acids using a co-digestion between cheese whey and sewage sludge in a continuous reactor. The effect of two different feeding regimes (one and two per day) and three hydraulic retention times (HRT) (15, 10 and 6 days) on the organic acids production were studied. The optimal conditions for the process were 10 days HRT, 2 feeding cycles per day, reaching a maximum degree of acidification of 44%. Under these conditions, the most abundant organic acid was caproic acid. The analysis of the microbial community dynamics in the reactor during the HRT changes revealed a microbiome enriched in organisms involved in caproic acid production. Additionally, the production of polyhydroxyalkanoates using the organic acids stream as feeding was verified in a fed-batch experiment obtaining a copolymer formed by hydroxybutyrate, hydroxyvalerate and hydroxyhexanoate.
Co-digestion of cheese whey with sewage sludge for caproic acid production: Role of microbiome and polyhydroxyalkanoates potential production
Treu L.;Campanaro S.;
2021
Abstract
The main aim of this work was to evaluate the efficiency of producing caproic acid and other volatile fatty acids using a co-digestion between cheese whey and sewage sludge in a continuous reactor. The effect of two different feeding regimes (one and two per day) and three hydraulic retention times (HRT) (15, 10 and 6 days) on the organic acids production were studied. The optimal conditions for the process were 10 days HRT, 2 feeding cycles per day, reaching a maximum degree of acidification of 44%. Under these conditions, the most abundant organic acid was caproic acid. The analysis of the microbial community dynamics in the reactor during the HRT changes revealed a microbiome enriched in organisms involved in caproic acid production. Additionally, the production of polyhydroxyalkanoates using the organic acids stream as feeding was verified in a fed-batch experiment obtaining a copolymer formed by hydroxybutyrate, hydroxyvalerate and hydroxyhexanoate.File | Dimensione | Formato | |
---|---|---|---|
2021_Iglesias_Co-digestion of cheese whey with sewage sludge for caproic acid production Role of microbiome and polyhydroxyalkanoates potential production_BioresTech.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
4.02 MB
Formato
Adobe PDF
|
4.02 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.