The photo-excited triplet state of Zn-protoporphyrin IX located in the heme pocket of human neuroglobin has been investigated by time-resolved EPR coupled to magnetophotoselection. The triplet state in the protein matrix has been compared with the model complex in organic glass, considering both non-coordinating and coordinating solvent mixtures. The protein matrix plays an important role in stabilizing the coordination of the embedded chromophore, resulting in a more homogeneous environment relative to that of the chromophore in a glassy solvent, even in the presence of an axial nitrogenous ligand like pyridine. The EPR spectral parameters point out a slow Jahn–Teller interconversion between slightly different triplet states, both in organic solvent and in the protein matrix. The EPR-magnetophotoselection allows us to propose a reinterpretation of the assignment of the Q bands in the electronic absorption spectrum.
Neuroglobin Provides a Convenient Scaffold to Investigate the Triplet-State Properties of Porphyrins by Time-Resolved EPR Spectroscopy and Magnetophotoselection
Ciuti S.;Barbon A.;Bortolus M.;Agostini A.;Bergantino E.;Di Valentin M.;Carbonera D.
2022
Abstract
The photo-excited triplet state of Zn-protoporphyrin IX located in the heme pocket of human neuroglobin has been investigated by time-resolved EPR coupled to magnetophotoselection. The triplet state in the protein matrix has been compared with the model complex in organic glass, considering both non-coordinating and coordinating solvent mixtures. The protein matrix plays an important role in stabilizing the coordination of the embedded chromophore, resulting in a more homogeneous environment relative to that of the chromophore in a glassy solvent, even in the presence of an axial nitrogenous ligand like pyridine. The EPR spectral parameters point out a slow Jahn–Teller interconversion between slightly different triplet states, both in organic solvent and in the protein matrix. The EPR-magnetophotoselection allows us to propose a reinterpretation of the assignment of the Q bands in the electronic absorption spectrum.File | Dimensione | Formato | |
---|---|---|---|
ApllMagnRes_2021_ZnPpIX.pdf
non disponibili
Descrizione: versione online
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.