We introduce a method for constructing localized excitations and simulating the real time dynamics of excitons at the Many-Body Perturbation Theory Bethe-Salpeter Equation level. We track, on the femto-seconds scale, electron injection from a photoexcited dye into a semiconducting slab. From the time-dependent many-body wave function we compute the spatial evolution of the electron and of the hole; full electron injection is attained within 5 fs. Time-resolved analysis of the electron density and electron-hole interaction energy hints at a two-step charge transfer mechanism through an intermediary partially injected state. We adopt the Von-Neumann entropy for analyzing how the electron and hole entangle. We find that the excitation of the dye-semiconductor model may be represented by a four-level system and register a decrease in entanglement upon electron injection. At full injection, the electron and the hole exhibit only a small degree of entanglement indicative of pure electron and hole states.
Real space-real time evolution of excitonic states based on the bethe-salpeter equation method
Ambrosetti A.;Umari P.
2021
Abstract
We introduce a method for constructing localized excitations and simulating the real time dynamics of excitons at the Many-Body Perturbation Theory Bethe-Salpeter Equation level. We track, on the femto-seconds scale, electron injection from a photoexcited dye into a semiconducting slab. From the time-dependent many-body wave function we compute the spatial evolution of the electron and of the hole; full electron injection is attained within 5 fs. Time-resolved analysis of the electron density and electron-hole interaction energy hints at a two-step charge transfer mechanism through an intermediary partially injected state. We adopt the Von-Neumann entropy for analyzing how the electron and hole entangle. We find that the excitation of the dye-semiconductor model may be represented by a four-level system and register a decrease in entanglement upon electron injection. At full injection, the electron and the hole exhibit only a small degree of entanglement indicative of pure electron and hole states.| File | Dimensione | Formato | |
|---|---|---|---|
|
elliott-et-al-2021-real-space-real-time-evolution-of-excitonic-states-based-on-the-bethe-salpeter-equation-method.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
3.31 MB
Formato
Adobe PDF
|
3.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




