We study the language inclusion problem L1 ⊆ L2, where L1 is regular or context-free. Our approach relies on abstract interpretation and checks whether an overapproximating abstraction of L1, obtained by approximating the Kleene iterates of its least fixpoint characterization, is included in L2. We show that a language inclusion problem is decidable whenever this overapproximating abstraction satisfies a completeness condition (i.e., its loss of precision causes no false alarm) and prevents infinite ascending chains (i.e., it guarantees termination of least fixpoint computations). This overapproximating abstraction of languages can be defined using quasiorder relations on words, where the abstraction gives the language of all the words “greater than or equal to” a given input word for that quasiorder. We put forward a range of such quasiorders that allow us to systematically design decision procedures for different language inclusion problems, such as regular languages into regular languages or into trace sets of one-counter nets, and context-free languages into regular languages. In the case of inclusion between regular languages, some of the induced inclusion checking procedures correspond to well-known state-of-the-art algorithms, like the so-called antichain algorithms. Finally, we provide an equivalent language inclusion checking algorithm based on a greatest fixpoint computation that relies on quotients of languages and, to the best of our knowledge, was not previously known.

Complete Abstractions for Checking Language Inclusion

Ganty, Pierre;Ranzato, Francesco
;
2021

Abstract

We study the language inclusion problem L1 ⊆ L2, where L1 is regular or context-free. Our approach relies on abstract interpretation and checks whether an overapproximating abstraction of L1, obtained by approximating the Kleene iterates of its least fixpoint characterization, is included in L2. We show that a language inclusion problem is decidable whenever this overapproximating abstraction satisfies a completeness condition (i.e., its loss of precision causes no false alarm) and prevents infinite ascending chains (i.e., it guarantees termination of least fixpoint computations). This overapproximating abstraction of languages can be defined using quasiorder relations on words, where the abstraction gives the language of all the words “greater than or equal to” a given input word for that quasiorder. We put forward a range of such quasiorders that allow us to systematically design decision procedures for different language inclusion problems, such as regular languages into regular languages or into trace sets of one-counter nets, and context-free languages into regular languages. In the case of inclusion between regular languages, some of the induced inclusion checking procedures correspond to well-known state-of-the-art algorithms, like the so-called antichain algorithms. Finally, we provide an equivalent language inclusion checking algorithm based on a greatest fixpoint computation that relies on quotients of languages and, to the best of our knowledge, was not previously known.
File in questo prodotto:
File Dimensione Formato  
cameraready.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 367.74 kB
Formato Adobe PDF
367.74 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3400222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact