Droplets microfluidics is broadening the range of Lab on a Chip solutions that, however, still suffer from the lack of an adequate level of integration of optical detection and sensors. In fact, droplets are currently monitored by imaging techniques, mostly limited by a time-consuming data post-processing and big data storage. This work aims to overcome this weakness, presenting a fully integrated opto-microfluidic platform able to detect, label and characterize droplets without the need for imaging techniques. It consists of optical waveguides arranged in a Mach Zehnder's configuration and a microfluidic circuit both coupled in the same substrate. As a proof of concept, the work demonstrates the performances of this opto-microfluidic platform in performing a complete and simultaneous sequence labelling and identification of each single droplet, in terms of its optical properties, as well as velocity and lengths. Since the sensor is realized in lithium niobate crystals, which is also highly resistant to chemical attack and biocompatible, the future addition of multifunctional stages into the same substrate can be easily envisioned, extending the range of applicability of the final device.

Real-time precise microfluidic droplets label-sequencing combined in a velocity detection sensor

Zamboni, R;Zaltron, A;Sada, C
2021

Abstract

Droplets microfluidics is broadening the range of Lab on a Chip solutions that, however, still suffer from the lack of an adequate level of integration of optical detection and sensors. In fact, droplets are currently monitored by imaging techniques, mostly limited by a time-consuming data post-processing and big data storage. This work aims to overcome this weakness, presenting a fully integrated opto-microfluidic platform able to detect, label and characterize droplets without the need for imaging techniques. It consists of optical waveguides arranged in a Mach Zehnder's configuration and a microfluidic circuit both coupled in the same substrate. As a proof of concept, the work demonstrates the performances of this opto-microfluidic platform in performing a complete and simultaneous sequence labelling and identification of each single droplet, in terms of its optical properties, as well as velocity and lengths. Since the sensor is realized in lithium niobate crystals, which is also highly resistant to chemical attack and biocompatible, the future addition of multifunctional stages into the same substrate can be easily envisioned, extending the range of applicability of the final device.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3400490
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact