In this work, we propose a novel hybrid additive manufacturing technique, which combines selective laser sintering (SLS) of polyamide powders and subsequent preceramic polymer infiltration and pyrolysis to manufacture Silicon Carbide components for complex architectures. By controlling the porosity of the sintered polymeric preform we are able to control the shrinkage upon the first infiltration and pyrolysis. This enabled the manufacturing of smaller features than those achievable with other manufacturing techniques. The mechanical strength of the resulting ceramic increased with the number of reinfiltration cycles up to 24 MPa, inversely the residual porosity decreased to 10 vol%. The microstructure showed two distinct phases of SiOC and SiC. The first was attributed to the interaction between the porous polyamide and the ceramic precursor during the first infiltration. SiC derived from the pyrolysis of the preceramic precursor alone.

Additive manufacturing of silicon carbide by selective laser sintering of PA12 powders and polymer infiltration and pyrolysis

Pelanconi M.;Colombo P.;
2021

Abstract

In this work, we propose a novel hybrid additive manufacturing technique, which combines selective laser sintering (SLS) of polyamide powders and subsequent preceramic polymer infiltration and pyrolysis to manufacture Silicon Carbide components for complex architectures. By controlling the porosity of the sintered polymeric preform we are able to control the shrinkage upon the first infiltration and pyrolysis. This enabled the manufacturing of smaller features than those achievable with other manufacturing techniques. The mechanical strength of the resulting ceramic increased with the number of reinfiltration cycles up to 24 MPa, inversely the residual porosity decreased to 10 vol%. The microstructure showed two distinct phases of SiOC and SiC. The first was attributed to the interaction between the porous polyamide and the ceramic precursor during the first infiltration. SiC derived from the pyrolysis of the preceramic precursor alone.
File in questo prodotto:
File Dimensione Formato  
pelanconi.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 5.61 MB
Formato Adobe PDF
5.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3400917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 38
  • OpenAlex ND
social impact