Over recent years, considerable attention has been devoted to the optimization of energy production in wind farms, where yaw angles can play a significant role. In order to quantify and maximize such potential power, the simulation of wakes is vital. In the present study, an actuator line model code was implemented in the OpenFOAM flow solver. A tip treatment was applied to involve the tip effect induced by the pressure equalization from the suction and pressure sides. The Leishman–Beddoes dynamic stall (LB- DS) model modified by Sheng et al. was employed to consider the dynamic stall phenomenon. The developed ALM-CFD solver was validated for the NREL Phase VI wind turbine reference case. The solver was then used in simulating the yawed wind turbine, and power variation was compared with UBEM and CFD. Overall, according to the obtained data, the coupled solver compared well with CFD. There was an improvement in terms of prediction of the phase delay that is due to the dynamic stall. However, there was still negligible overestimation in deep stall conditions. Based on the obtained results, it is suggested that the reduction of power output follows a cosine to the power of X function of the yaw angle. In terms of visualizing wake, the results demonstrated that the current ALM code was satisfying enough to simulate skewed wake and vortices trajectory. The effect of advancing and retreating blade was captured. It was found that yaw led to the concentration of the induced velocity downstream, resulting in a lower velocity deficit on a broader area, which is essential for wind farm optimization.
Numerical Study of a Horizontal Wind Turbine under Yaw Conditions
Arabgolarcheh, Alireza;Jannesarahmadi, Sahar;Benini, Ernesto;Menegozzo, Luca
2021
Abstract
Over recent years, considerable attention has been devoted to the optimization of energy production in wind farms, where yaw angles can play a significant role. In order to quantify and maximize such potential power, the simulation of wakes is vital. In the present study, an actuator line model code was implemented in the OpenFOAM flow solver. A tip treatment was applied to involve the tip effect induced by the pressure equalization from the suction and pressure sides. The Leishman–Beddoes dynamic stall (LB- DS) model modified by Sheng et al. was employed to consider the dynamic stall phenomenon. The developed ALM-CFD solver was validated for the NREL Phase VI wind turbine reference case. The solver was then used in simulating the yawed wind turbine, and power variation was compared with UBEM and CFD. Overall, according to the obtained data, the coupled solver compared well with CFD. There was an improvement in terms of prediction of the phase delay that is due to the dynamic stall. However, there was still negligible overestimation in deep stall conditions. Based on the obtained results, it is suggested that the reduction of power output follows a cosine to the power of X function of the yaw angle. In terms of visualizing wake, the results demonstrated that the current ALM code was satisfying enough to simulate skewed wake and vortices trajectory. The effect of advancing and retreating blade was captured. It was found that yaw led to the concentration of the induced velocity downstream, resulting in a lower velocity deficit on a broader area, which is essential for wind farm optimization.File | Dimensione | Formato | |
---|---|---|---|
9978134.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
9.98 MB
Formato
Adobe PDF
|
9.98 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.