This paper presents a methodology for the analysis of three-dimensional static fractures in fiber-reinforced materials. Fibers are discretely modeled using a modification of the embedded reinforcement method with bond Slip (mERS) that allows its combination with a generalized finite element method (GFEM) for three-dimensional fractures. Since the GFEM mesh does not need to fit fracture surfaces or fibers, the GFEM–mERS can handle fibers bridging across crack faces at arbitrary angles. The method is verified against three-dimensional FEM solutions using conformal discretizations for crack surfaces and fiber boundaries. The comparison of the method against experimental data and convergence studies of the h- and p-version of the method is also presented.

A generalized finite element method for three-dimensional fractures in fiber-reinforced composites

Simone A.;
2021

Abstract

This paper presents a methodology for the analysis of three-dimensional static fractures in fiber-reinforced materials. Fibers are discretely modeled using a modification of the embedded reinforcement method with bond Slip (mERS) that allows its combination with a generalized finite element method (GFEM) for three-dimensional fractures. Since the GFEM mesh does not need to fit fracture surfaces or fibers, the GFEM–mERS can handle fibers bridging across crack faces at arbitrary angles. The method is verified against three-dimensional FEM solutions using conformal discretizations for crack surfaces and fiber boundaries. The comparison of the method against experimental data and convergence studies of the h- and p-version of the method is also presented.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3402203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact