Electric vehicles with multiple motors allow torque-vectoring, i.e., the individual control of each powertrain torque. Torque-vectoring (TV) can provide: (i) enhancement of vehicle safety and handling, via the generation of a direct yaw moment to shape the understeer characteristics and increase yaw and sideslip damping; and (ii) energy consumption reductions, via appropriate torque allocation to each motor. The FP7 European project iCOMPOSE thoroughly addressed (i) and (ii). Theoretical analyses were carried out to design state-of-the-art TV controllers, which were validated through: (a) vehicle simulations; and (b) extensive experimental tests, which were performed at rolling road facilities and proving grounds, using a Range Rover Evoque prototype equipped with four identical on-board electric powertrains. This paper provides an overview of the TV-related contributions of iCOMPOSE.

On the Enhancement of Vehicle Handling and Energy Efficiency of Electric Vehicles with Multiple Motors: The iCOMPOSE Project

Lenzo B.;
2020

Abstract

Electric vehicles with multiple motors allow torque-vectoring, i.e., the individual control of each powertrain torque. Torque-vectoring (TV) can provide: (i) enhancement of vehicle safety and handling, via the generation of a direct yaw moment to shape the understeer characteristics and increase yaw and sideslip damping; and (ii) energy consumption reductions, via appropriate torque allocation to each motor. The FP7 European project iCOMPOSE thoroughly addressed (i) and (ii). Theoretical analyses were carried out to design state-of-the-art TV controllers, which were validated through: (a) vehicle simulations; and (b) extensive experimental tests, which were performed at rolling road facilities and proving grounds, using a Range Rover Evoque prototype equipped with four identical on-board electric powertrains. This paper provides an overview of the TV-related contributions of iCOMPOSE.
2020
Lecture Notes in Mechanical Engineering
978-3-030-38076-2
978-3-030-38077-9
File in questo prodotto:
File Dimensione Formato  
Lenzo2019enhancement.pdf

accesso aperto

Tipologia: Postprint (accepted version)
Licenza: Accesso libero
Dimensione 702.47 kB
Formato Adobe PDF
702.47 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3402886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact