Raman spectroscopy can probe the structure and conformations of specific chemical groups within proteins and may thus be used as a technique complementary to X-ray crystallography. This combined approach can be decisive in resolving ambiguities in the interpretation of enzymatic or X-ray induced processes. Here, we present an online Raman setup developed at the European Synchrotron that allows for interleaved Raman spectra acquisition and X-ray diffraction measurements with fast probe exchange and simple alignment while maintaining a high sensitivity over the entire spectral range. This device has been recently employed in the study of a covalent intermediate in the O2-dependent breakdown of uric acid by the cofactor-free enzyme urate oxidase and to monitor its decay induced by X-ray exposure.
Online Raman spectroscopy for structural biology on beamline ID29 of the ESRF
Steiner R.;
2017
Abstract
Raman spectroscopy can probe the structure and conformations of specific chemical groups within proteins and may thus be used as a technique complementary to X-ray crystallography. This combined approach can be decisive in resolving ambiguities in the interpretation of enzymatic or X-ray induced processes. Here, we present an online Raman setup developed at the European Synchrotron that allows for interleaved Raman spectra acquisition and X-ray diffraction measurements with fast probe exchange and simple alignment while maintaining a high sensitivity over the entire spectral range. This device has been recently employed in the study of a covalent intermediate in the O2-dependent breakdown of uric acid by the cofactor-free enzyme urate oxidase and to monitor its decay induced by X-ray exposure.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.