Dermatofibromas are common benign skin lesions, the etiology of which is poorly understood. We identified two unrelated pedigrees in which there was autosomal dominant transmission of multiple dermatofibromas. Whole exome sequencing revealed a rare shared heterozygous missense variant in the F13A1 gene encoding factor XIII subunit A (FXIII-A), a transglutaminase involved in hemostasis, wound healing, tumor growth, and apoptosis. The variant (p.Lys679Met) has an allele frequency of 0.0002 and is predicted to be a damaging mutation. Recombinant human Lys679Met FXIII-A demonstrated reduced fibrin crosslinking activity in vitro. Of note, the treatment of fibroblasts with media containing Lys679Met FXIII-A led to enhanced adhesion, proliferation, and type I collagen synthesis. Immunostaining revealed co-localization between FXIII-A and α4β1 integrins, more prominently for Lys679Met FXIII-A than the wild type. In addition, both the α4β1 inhibitors and the mutation of the FXIII-A Isoleucine-Leucine-Aspartate-Threonine (ILDT) motif prevented Lys679Met FXIII-A-dependent proliferation and collagen synthesis of fibroblasts. Our data suggest that the Lys679Met mutation may lead to a conformational change in the FXIII-A protein that enhances α4-integrin binding and provides insight into an unexpected role for FXIII-A in the pathobiology of familial dermatofibroma.

Coagulation Factor XIII-A Subunit Missense Mutation in the Pathobiology of Autosomal Dominant Multiple Dermatofibromas

Steiner R.;
2020

Abstract

Dermatofibromas are common benign skin lesions, the etiology of which is poorly understood. We identified two unrelated pedigrees in which there was autosomal dominant transmission of multiple dermatofibromas. Whole exome sequencing revealed a rare shared heterozygous missense variant in the F13A1 gene encoding factor XIII subunit A (FXIII-A), a transglutaminase involved in hemostasis, wound healing, tumor growth, and apoptosis. The variant (p.Lys679Met) has an allele frequency of 0.0002 and is predicted to be a damaging mutation. Recombinant human Lys679Met FXIII-A demonstrated reduced fibrin crosslinking activity in vitro. Of note, the treatment of fibroblasts with media containing Lys679Met FXIII-A led to enhanced adhesion, proliferation, and type I collagen synthesis. Immunostaining revealed co-localization between FXIII-A and α4β1 integrins, more prominently for Lys679Met FXIII-A than the wild type. In addition, both the α4β1 inhibitors and the mutation of the FXIII-A Isoleucine-Leucine-Aspartate-Threonine (ILDT) motif prevented Lys679Met FXIII-A-dependent proliferation and collagen synthesis of fibroblasts. Our data suggest that the Lys679Met mutation may lead to a conformational change in the FXIII-A protein that enhances α4-integrin binding and provides insight into an unexpected role for FXIII-A in the pathobiology of familial dermatofibroma.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022202X19332129-main.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 4.31 MB
Formato Adobe PDF
4.31 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3403163
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact