A brain-computer interface (BCI) can be defined as any system that can track the person's intent which is embedded in his/her brain activity and, from it alone, translate the intention into commands of a computer. Among the brain signal monitoring systems best suited for this challenging task, electroencephalography (EEG) and magnetoencephalography (MEG) are the most realistic, since both are non-invasive, EEG is portable and MEG could provide more specific information that could be later exploited also through EEG signals. The first two BCI steps require set up of the appropriate experimental protocol while recording the brain signal and then to extract interesting features from the recorded cerebral activity. To provide information useful in these BCI stages, our aim is to provide an overview of a new procedure we recently developed, named functional source separation (FSS). As it comes from the blind source separation algorithms, it exploits the most valuable information provided by the electrophysiological techniques, i.e. the waveform signal properties, remaining blind to the biophysical nature of the signal sources. FSS returns the single trial source activity, estimates the time course of a neuronal pool along different experimental states on the basis of a specific functional requirement in a specific time period, and uses the simulated annealing as the optimization procedure allowing the exploit of functional constraints non-differentiable. Moreover, a minor section is included, devoted to information acquired by MEG in stroke patients, to guide BCI applications aiming at sustaining motor behaviour in these patients. Relevant BCI features -spatial and time-frequency properties -are in fact altered by a stroke in the regions devoted to hand control. Moreover, a method to investigate the relationship between sensory and motor hand cortical network activities is described, providing information useful to develop BCI feedback control systems. This review provides a description of the FSS technique, a promising tool for the BCI community for online electrophysiological feature extraction, and offers interesting information to develop BCI applications to sustain hand control in stroke patients. © 2007 The Authors. Journal compilation © 2007 The Physiological Society.

Functional source separation and hand cortical representation for a brain-computer interface feature extraction

Porcaro C.;
2007

Abstract

A brain-computer interface (BCI) can be defined as any system that can track the person's intent which is embedded in his/her brain activity and, from it alone, translate the intention into commands of a computer. Among the brain signal monitoring systems best suited for this challenging task, electroencephalography (EEG) and magnetoencephalography (MEG) are the most realistic, since both are non-invasive, EEG is portable and MEG could provide more specific information that could be later exploited also through EEG signals. The first two BCI steps require set up of the appropriate experimental protocol while recording the brain signal and then to extract interesting features from the recorded cerebral activity. To provide information useful in these BCI stages, our aim is to provide an overview of a new procedure we recently developed, named functional source separation (FSS). As it comes from the blind source separation algorithms, it exploits the most valuable information provided by the electrophysiological techniques, i.e. the waveform signal properties, remaining blind to the biophysical nature of the signal sources. FSS returns the single trial source activity, estimates the time course of a neuronal pool along different experimental states on the basis of a specific functional requirement in a specific time period, and uses the simulated annealing as the optimization procedure allowing the exploit of functional constraints non-differentiable. Moreover, a minor section is included, devoted to information acquired by MEG in stroke patients, to guide BCI applications aiming at sustaining motor behaviour in these patients. Relevant BCI features -spatial and time-frequency properties -are in fact altered by a stroke in the regions devoted to hand control. Moreover, a method to investigate the relationship between sensory and motor hand cortical network activities is described, providing information useful to develop BCI feedback control systems. This review provides a description of the FSS technique, a promising tool for the BCI community for online electrophysiological feature extraction, and offers interesting information to develop BCI applications to sustain hand control in stroke patients. © 2007 The Authors. Journal compilation © 2007 The Physiological Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3405466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 41
social impact