We propose a novel cerebral source extraction method (functional source separation, FSS) starting from extra-cephalic magnetoencephalographic (MEG) signals in humans. It is obtained by adding a functional constraint to the cost function of a basic independent component analysis (ICA) model, defined according to the specific experiment under study, and removing the orthogonality constraint, (i.e., in a single-unit approach, skipping decorrelation of each new component from the subspace generated by the components already found). Source activity was obtained all along processing of a simple separate sensory stimulation of thumb, little finger, and median nerve. Being the sources obtained one by one in each stage applying different criteria, the a posteriori "interesting sources selection" step is avoided. The obtained solutions were in agreement with the homuncular organization in all subjects, neurophysiologically reacting properly and with negligible residual activity. On this basis, the separated sources were interpreted as satisfactorily describing highly superimposed and interconnected neural networks devoted to cortical finger representation. The proposed procedure significantly improves the quality of the extraction with respect to a standard BSS algorithm. Moreover, it is very flexible in including different functional constraints, providing a promising tool to identify neuronal networks in very general cerebral processing. © 2006 Wiley-Liss, Inc.

Functional source separation from magnetoencephalographic signals

Porcaro C.;Rossini P. M.;
2006

Abstract

We propose a novel cerebral source extraction method (functional source separation, FSS) starting from extra-cephalic magnetoencephalographic (MEG) signals in humans. It is obtained by adding a functional constraint to the cost function of a basic independent component analysis (ICA) model, defined according to the specific experiment under study, and removing the orthogonality constraint, (i.e., in a single-unit approach, skipping decorrelation of each new component from the subspace generated by the components already found). Source activity was obtained all along processing of a simple separate sensory stimulation of thumb, little finger, and median nerve. Being the sources obtained one by one in each stage applying different criteria, the a posteriori "interesting sources selection" step is avoided. The obtained solutions were in agreement with the homuncular organization in all subjects, neurophysiologically reacting properly and with negligible residual activity. On this basis, the separated sources were interpreted as satisfactorily describing highly superimposed and interconnected neural networks devoted to cortical finger representation. The proposed procedure significantly improves the quality of the extraction with respect to a standard BSS algorithm. Moreover, it is very flexible in including different functional constraints, providing a promising tool to identify neuronal networks in very general cerebral processing. © 2006 Wiley-Liss, Inc.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3405468
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 40
social impact