The aim of the investigation was to define the mechanisms of sediment transport in the swash zone of microtidal coarse-clastic beaches in the very short term by evaluating the displacement rates of marked pebbles under low-energy wave conditions. Tests were performed at two sites (Marina di Pisa, Ligurian Sea, and Portonovo, central Adriatic Sea) to check the consistency of the data over a range of different grain sizes. Two recovery campaigns were carried out at both sites, one 6 h and the other 24 h after the injection. During the experiments wave action was at a minimum (wave heights never exceeded 0.3 m). The results show that 20% of pebbles ranging in diameter from 30-90 mm moved significantly (more than 0.5 m) already 6 h after the injection, with some tracers being lost (3%). After 24 h, 40% of the pebbles were significantly displaced and 10% were lost. The preferential downslope movement of tracers, which suggests that coarse sediment movement under low-energy conditions is mainly controlled by gravity processes enhanced by steep beachface slopes, represents the novelty of the results reported here. It would appear that swash processes on low-energy beaches cause a significant rate of pebble displacement through the destabilization induced by wave uprush and backwash. Despite the microtidal range, the position of the mean water level plays a major role in changing the beach level at which swash processes can actually trigger pebble movement. The results of this study show that considerable, and mostly seaward-directed, coarse sediment transport takes place even during short fair-weather periods.

On the displacement of marked pebbles on two coarse-clastic beaches during short fair-weather periods (Marina di Pisa and Portonovo, Italy)

POZZEBON, ALESSANDRO
2013

Abstract

The aim of the investigation was to define the mechanisms of sediment transport in the swash zone of microtidal coarse-clastic beaches in the very short term by evaluating the displacement rates of marked pebbles under low-energy wave conditions. Tests were performed at two sites (Marina di Pisa, Ligurian Sea, and Portonovo, central Adriatic Sea) to check the consistency of the data over a range of different grain sizes. Two recovery campaigns were carried out at both sites, one 6 h and the other 24 h after the injection. During the experiments wave action was at a minimum (wave heights never exceeded 0.3 m). The results show that 20% of pebbles ranging in diameter from 30-90 mm moved significantly (more than 0.5 m) already 6 h after the injection, with some tracers being lost (3%). After 24 h, 40% of the pebbles were significantly displaced and 10% were lost. The preferential downslope movement of tracers, which suggests that coarse sediment movement under low-energy conditions is mainly controlled by gravity processes enhanced by steep beachface slopes, represents the novelty of the results reported here. It would appear that swash processes on low-energy beaches cause a significant rate of pebble displacement through the destabilization induced by wave uprush and backwash. Despite the microtidal range, the position of the mean water level plays a major role in changing the beach level at which swash processes can actually trigger pebble movement. The results of this study show that considerable, and mostly seaward-directed, coarse sediment transport takes place even during short fair-weather periods.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3405657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
social impact