Gas insulated transmission lines (GILs) are used in electrical systems mainly for power transmission and High Voltage substation interconnection. In this paper, we focus on the development of complex numerical tools for the optimization of gas insulated HVDC components by the estimation of realistic electric field distribution and the voltage holding of the designed geometry. In particular, the paper aims at describing the correct modelling approach suitable to study high voltage components in DC, considering the nonlinear behaviour characterizing the electrical conductivity of solid and gas insulators. The simulated field distribution is then adopted to estimate the voltage holding of the dielectric gas, with a convenient engineering technique, based on the streamer criterion. These two tools are integrated in an automatic optimization package developed in COMSOL® and MATLAB®, with the purpose of adjusting the critical geometry features, suffering from excessive electrical stress and possibly giving rise to electrical breakdown, in order to guide the designer towards a robust solution.

Automatic Optimization of Gas Insulated Components Based on the Streamer Inception Criterion

Lucchini, Francesco;Marconato, Nicolò;Bettini, Paolo
2021

Abstract

Gas insulated transmission lines (GILs) are used in electrical systems mainly for power transmission and High Voltage substation interconnection. In this paper, we focus on the development of complex numerical tools for the optimization of gas insulated HVDC components by the estimation of realistic electric field distribution and the voltage holding of the designed geometry. In particular, the paper aims at describing the correct modelling approach suitable to study high voltage components in DC, considering the nonlinear behaviour characterizing the electrical conductivity of solid and gas insulators. The simulated field distribution is then adopted to estimate the voltage holding of the dielectric gas, with a convenient engineering technique, based on the streamer criterion. These two tools are integrated in an automatic optimization package developed in COMSOL® and MATLAB®, with the purpose of adjusting the critical geometry features, suffering from excessive electrical stress and possibly giving rise to electrical breakdown, in order to guide the designer towards a robust solution.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3407419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact