: Sequencing technologies has provided the basis of most modern genome sequencing studies due to its high base-level accuracy and relatively low cost. One of the most demanding step is mapping reads to the human reference genome. The reliance on a single reference human genome could introduce substantial biases in downstream analyses. Pangenomic graph reference representations offer an attractive approach for storing genetic variations. Moreover, it is possible to include known variants in the reference in order to make read mapping, variant calling, and genotyping variant-aware. Only recently a framework for variation graphs, vg [Garrison E, Adam MN, Siren J, et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat Biotechnol 2018;36:875-9], have improved variation-aware alignment and variant calling in general. The major bottleneck of vg is its high cost of reads mapping to a variation graph. In this paper we study the problem of SNP calling on a variation graph and we present a fast reads alignment tool, named VG SNP-Aware. VG SNP-Aware is able align reads exactly to a variation graph and detect SNPs based on these aligned reads. The results show that VG SNP-Aware can efficiently map reads to a variation graph with a speedup of 40× with respect to vg and similar accuracy on SNPs detection.

Fast alignment of reads to a variation graph with application to SNP detection

Comin, Matteo
2021

Abstract

: Sequencing technologies has provided the basis of most modern genome sequencing studies due to its high base-level accuracy and relatively low cost. One of the most demanding step is mapping reads to the human reference genome. The reliance on a single reference human genome could introduce substantial biases in downstream analyses. Pangenomic graph reference representations offer an attractive approach for storing genetic variations. Moreover, it is possible to include known variants in the reference in order to make read mapping, variant calling, and genotyping variant-aware. Only recently a framework for variation graphs, vg [Garrison E, Adam MN, Siren J, et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat Biotechnol 2018;36:875-9], have improved variation-aware alignment and variant calling in general. The major bottleneck of vg is its high cost of reads mapping to a variation graph. In this paper we study the problem of SNP calling on a variation graph and we present a fast reads alignment tool, named VG SNP-Aware. VG SNP-Aware is able align reads exactly to a variation graph and detect SNPs based on these aligned reads. The results show that VG SNP-Aware can efficiently map reads to a variation graph with a speedup of 40× with respect to vg and similar accuracy on SNPs detection.
File in questo prodotto:
File Dimensione Formato  
10.1515_jib-2021-0032.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 865.71 kB
Formato Adobe PDF
865.71 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3411065
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact