Background: Von Hippel–Lindau (VHL) disease is a neoplastic syndrome caused by a mutation of the VHL tumor suppressor gene. Retinal hemangioblastoma (RH) is a vascularized tumor and represents the most common ocular manifestation of this disease. At the retinal level, VHL protein is able to regulate tumor growth, angiogenic factors, and neuroinflammation, probably stimulating retinal glial cells. The aim of the present study was to analyze in vivo the optical coherence tomography (OCT) biomarkers of retinal macroglia and microglia in a cohort of VHL patients. Methods: The mean thicknesses of macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), and peripapillary retinal nerve fiber layer (pRNFL) were measured with OCT as biomarkers of retinal macroglia. OCT images were also analyzed to detect and quantify hyperreflective retinal foci (HRF), a biomarker of retinal activated microglia. Results: 61 eyes of 61 VHL patients (22 eyes (36.07%) with peripheral RH and 39 eyes (63.93%) without RH) and 28 eyes of 28 controls were evaluated. pRNFL was thinner in VHL patients (p < 0.05) and in VHL without RH (p < 0.01) compared to controls, and thicker in VHL patients with RH than in those without RH (p < 0.05). The thickness of mRNFL (p < 0.0001) and GCL (p < 0.05) was reduced in VHL patients and in VHL without RH compared to controls, whereas mRNFL (p < 0.0001) and GCL (p < 0.05) were increased in VHL patients with RH compared to those without RH. HRF were significantly higher in number in VHL patients and in VHL without RH, than in controls, and significantly lower (p < 0.05) in the eyes of VHL patients with RH, than in those without RH. Conclusions: The OCT analysis, which detects and allows to quantify the biomarkers of retinal microglia (HRF) and macroglia (pRNFL, mRNFL and GCL), showed a different behavior of these two retinal glial cells populations in VHL patients, related to the presence or absence of peripheral RH. These data allow to hypothesize a novel pathophysiologic pathway of retinal hemangioblastoma in VHL disease.

Retinal glial cells in von hippel–lindau disease: A novel approach in the pathophysiology of retinal hemangioblastoma

Pilotto E.;Midena G.;Torresin T.;Bacelle M. L.;Midena E.
2022

Abstract

Background: Von Hippel–Lindau (VHL) disease is a neoplastic syndrome caused by a mutation of the VHL tumor suppressor gene. Retinal hemangioblastoma (RH) is a vascularized tumor and represents the most common ocular manifestation of this disease. At the retinal level, VHL protein is able to regulate tumor growth, angiogenic factors, and neuroinflammation, probably stimulating retinal glial cells. The aim of the present study was to analyze in vivo the optical coherence tomography (OCT) biomarkers of retinal macroglia and microglia in a cohort of VHL patients. Methods: The mean thicknesses of macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), and peripapillary retinal nerve fiber layer (pRNFL) were measured with OCT as biomarkers of retinal macroglia. OCT images were also analyzed to detect and quantify hyperreflective retinal foci (HRF), a biomarker of retinal activated microglia. Results: 61 eyes of 61 VHL patients (22 eyes (36.07%) with peripheral RH and 39 eyes (63.93%) without RH) and 28 eyes of 28 controls were evaluated. pRNFL was thinner in VHL patients (p < 0.05) and in VHL without RH (p < 0.01) compared to controls, and thicker in VHL patients with RH than in those without RH (p < 0.05). The thickness of mRNFL (p < 0.0001) and GCL (p < 0.05) was reduced in VHL patients and in VHL without RH compared to controls, whereas mRNFL (p < 0.0001) and GCL (p < 0.05) were increased in VHL patients with RH compared to those without RH. HRF were significantly higher in number in VHL patients and in VHL without RH, than in controls, and significantly lower (p < 0.05) in the eyes of VHL patients with RH, than in those without RH. Conclusions: The OCT analysis, which detects and allows to quantify the biomarkers of retinal microglia (HRF) and macroglia (pRNFL, mRNFL and GCL), showed a different behavior of these two retinal glial cells populations in VHL patients, related to the presence or absence of peripheral RH. These data allow to hypothesize a novel pathophysiologic pathway of retinal hemangioblastoma in VHL disease.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3411296
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact