This work reports an all-atom molecular dynamics study of the first stages of aggregation of poly(γ-benzyl-L-glutamate)—PBLG—polymers end-capped with C60. PBLG self-assembles in water and shows polymorphism when specific changes in the molecular structure are made. Three variants of PBLG are compared, which differ for the location of the C60 moiety: N-terminus, C-terminus, or both. The aim of the computational experiments was to rationalize the key molecular properties that are relevant to the supramolecular polymorphism. Single-peptide simulations in tetrahydrofuran and in water allowed to quantify the strength of the self-assembly driving force in terms of the overall order parameter of the phenyl rings that are “coating” the peptides. Two-peptide simulations for the singly capped peptides showed that two kinds of aggregates can be formed: one “slow” thermodynamically more stable, and one “fast” kinetically favoured. These first-stage aggregates are interpreted as the seeds leading to different self-assemblies. Graphical abstract: [Figure not available: see fulltext.]

Insights on the supramolecular polymorphism of poly(γ-benzyl-L-glutamate) rod-like peptides from atomistic molecular dynamics simulations

Dattola G.
Investigation
;
Zerbetto M.
Supervision
2021

Abstract

This work reports an all-atom molecular dynamics study of the first stages of aggregation of poly(γ-benzyl-L-glutamate)—PBLG—polymers end-capped with C60. PBLG self-assembles in water and shows polymorphism when specific changes in the molecular structure are made. Three variants of PBLG are compared, which differ for the location of the C60 moiety: N-terminus, C-terminus, or both. The aim of the computational experiments was to rationalize the key molecular properties that are relevant to the supramolecular polymorphism. Single-peptide simulations in tetrahydrofuran and in water allowed to quantify the strength of the self-assembly driving force in terms of the overall order parameter of the phenyl rings that are “coating” the peptides. Two-peptide simulations for the singly capped peptides showed that two kinds of aggregates can be formed: one “slow” thermodynamically more stable, and one “fast” kinetically favoured. These first-stage aggregates are interpreted as the seeds leading to different self-assemblies. Graphical abstract: [Figure not available: see fulltext.]
File in questo prodotto:
File Dimensione Formato  
P56_PBGL_2.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3411737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact