Beyond causing local ischemia and cell damage at the site of injury, stroke strongly affects long-range anatomical connections, perturbing the functional organization of brain networks. Several studies reported functional connectivity abnormalities parallelling both behavioral deficits and functional recovery across different cognitive domains. FC alterations suggest that long-range communication in the brain is altered after stroke. However, standard FC analyses cannot reveal the directionality and time scale of inter-areal information transfer. We used resting-state fMRI and covariance-based Granger causality analysis to quantify network-level information transfer and its alteration in stroke. Two main large-scale anomalies were observed in stroke patients. First, inter-hemispheric information transfer was significantly decreased with respect to healthy controls. Second, stroke caused inter-hemispheric asymmetries, as information transfer within the affected hemisphere and from the affected to the intact hemisphere was significantly reduced. Both anomalies were more prominent in resting-state networks related to attention and language, and they correlated with impaired performance in several behavioral domains. Overall, our findings support the hypothesis that stroke provokes asymmetries between the affected and spared hemisphere, with different functional consequences depending on which hemisphere is lesioned.

Stroke-related alterations in inter-areal communication

Allegra M.;Favaretto C.;Metcalf N.;Corbetta M.;
2021

Abstract

Beyond causing local ischemia and cell damage at the site of injury, stroke strongly affects long-range anatomical connections, perturbing the functional organization of brain networks. Several studies reported functional connectivity abnormalities parallelling both behavioral deficits and functional recovery across different cognitive domains. FC alterations suggest that long-range communication in the brain is altered after stroke. However, standard FC analyses cannot reveal the directionality and time scale of inter-areal information transfer. We used resting-state fMRI and covariance-based Granger causality analysis to quantify network-level information transfer and its alteration in stroke. Two main large-scale anomalies were observed in stroke patients. First, inter-hemispheric information transfer was significantly decreased with respect to healthy controls. Second, stroke caused inter-hemispheric asymmetries, as information transfer within the affected hemisphere and from the affected to the intact hemisphere was significantly reduced. Both anomalies were more prominent in resting-state networks related to attention and language, and they correlated with impaired performance in several behavioral domains. Overall, our findings support the hypothesis that stroke provokes asymmetries between the affected and spared hemisphere, with different functional consequences depending on which hemisphere is lesioned.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2213158221002564-main.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 5.42 MB
Formato Adobe PDF
5.42 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3412241
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact