Let S be a locally noetherian scheme and consider two extensions G1 and G2 of abelian S-schemes by S-tori. In this note we prove that the fppf-sheaf (Formula presented.) of divisorial correspondences between G1 and G2 is representable. Moreover, using divisorial correspondences, we show that line bundles on an extension G of an abelian scheme by a torus define group homomorphisms between G and (Formula presented.) Dedicated to M. Raynaud.

A note on divisorial correspondences of extensions of abelian schemes by tori

Bertolin C.
;
2020

Abstract

Let S be a locally noetherian scheme and consider two extensions G1 and G2 of abelian S-schemes by S-tori. In this note we prove that the fppf-sheaf (Formula presented.) of divisorial correspondences between G1 and G2 is representable. Moreover, using divisorial correspondences, we show that line bundles on an extension G of an abelian scheme by a torus define group homomorphisms between G and (Formula presented.) Dedicated to M. Raynaud.
File in questo prodotto:
File Dimensione Formato  
CommInAlg.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 687.61 kB
Formato Adobe PDF
687.61 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3412466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact