Equations governing the nonlinear dynamics of complex systems are usually unknown, and indirect methods are used to reconstruct their manifolds. In turn, they depend on embedding parameters requiring other methods and long temporal sequences to be accurate. In this paper, we show that an optimal reconstruction can be achieved by lossless compression of system’s time course, providing a self-consistent analysis of its dynamics and a measure of its complexity, even for short sequences. Our measure of complexity detects system’s state changes such as weak synchronization phenomena, characterizing many systems, in one step, integrating results from Lyapunov and fractal analysis

Compressing Phase Space Detects State Changes in Nonlinear Dynamical Systems

d’Andrea, Valeria;De Domenico, Manlio
2020

Abstract

Equations governing the nonlinear dynamics of complex systems are usually unknown, and indirect methods are used to reconstruct their manifolds. In turn, they depend on embedding parameters requiring other methods and long temporal sequences to be accurate. In this paper, we show that an optimal reconstruction can be achieved by lossless compression of system’s time course, providing a self-consistent analysis of its dynamics and a measure of its complexity, even for short sequences. Our measure of complexity detects system’s state changes such as weak synchronization phenomena, characterizing many systems, in one step, integrating results from Lyapunov and fractal analysis
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3412848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact