Equations governing the nonlinear dynamics of complex systems are usually unknown, and indirect methods are used to reconstruct their manifolds. In turn, they depend on embedding parameters requiring other methods and long temporal sequences to be accurate. In this paper, we show that an optimal reconstruction can be achieved by lossless compression of system’s time course, providing a self-consistent analysis of its dynamics and a measure of its complexity, even for short sequences. Our measure of complexity detects system’s state changes such as weak synchronization phenomena, characterizing many systems, in one step, integrating results from Lyapunov and fractal analysis
Compressing Phase Space Detects State Changes in Nonlinear Dynamical Systems
d’Andrea, Valeria;De Domenico, Manlio
2020
Abstract
Equations governing the nonlinear dynamics of complex systems are usually unknown, and indirect methods are used to reconstruct their manifolds. In turn, they depend on embedding parameters requiring other methods and long temporal sequences to be accurate. In this paper, we show that an optimal reconstruction can be achieved by lossless compression of system’s time course, providing a self-consistent analysis of its dynamics and a measure of its complexity, even for short sequences. Our measure of complexity detects system’s state changes such as weak synchronization phenomena, characterizing many systems, in one step, integrating results from Lyapunov and fractal analysisPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.