One of the most statistically significant loci to result from large-scale GWAS of schizophrenia is 10q24.32. However, it is still unclear how this locus is involved in the pathoaetiology of schizophrenia. The hypothesis that presynaptic dopamine dysfunction underlies schizophrenia is one of the leading theories of the pathophysiology of the disorder. Supporting this, molecular imaging studies show evidence for elevated dopamine synthesis and release capacity. Thus, altered dopamine function could be a potential mechanism by which this genetic variant acts to increase the risk of schizophrenia. We therefore tested the hypothesis that the 10q24.32 region confers genetic risk for schizophrenia through an effect on striatal dopamine function. To this aim we investigated the in vivo relationship between a GWAS schizophrenia-associated SNP within this locus and dopamine synthesis capacity measured using [18F]-DOPA PET in healthy controls. 92 healthy volunteers underwent [18F]-DOPA PET scans to measure striatal dopamine synthesis capacity (indexed as Kicer) and were genotyped for the SNP rs7085104. We found a significant association between rs7085104 genotype and striatal Kicer. Our findings indicate that the mechanism mediating the 10q24.32 risk locus for schizophrenia could involve altered dopaminergic function. Future studies are needed to clarify the neurobiological pathway implicated in this association.

The effect of a genetic variant at the schizophrenia associated AS3MT/BORCS7 locus on striatal dopamine function: A PET imaging study

Veronese M.;
2019

Abstract

One of the most statistically significant loci to result from large-scale GWAS of schizophrenia is 10q24.32. However, it is still unclear how this locus is involved in the pathoaetiology of schizophrenia. The hypothesis that presynaptic dopamine dysfunction underlies schizophrenia is one of the leading theories of the pathophysiology of the disorder. Supporting this, molecular imaging studies show evidence for elevated dopamine synthesis and release capacity. Thus, altered dopamine function could be a potential mechanism by which this genetic variant acts to increase the risk of schizophrenia. We therefore tested the hypothesis that the 10q24.32 region confers genetic risk for schizophrenia through an effect on striatal dopamine function. To this aim we investigated the in vivo relationship between a GWAS schizophrenia-associated SNP within this locus and dopamine synthesis capacity measured using [18F]-DOPA PET in healthy controls. 92 healthy volunteers underwent [18F]-DOPA PET scans to measure striatal dopamine synthesis capacity (indexed as Kicer) and were genotyped for the SNP rs7085104. We found a significant association between rs7085104 genotype and striatal Kicer. Our findings indicate that the mechanism mediating the 10q24.32 risk locus for schizophrenia could involve altered dopaminergic function. Future studies are needed to clarify the neurobiological pathway implicated in this association.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3414084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact