By the time cardiotoxicity-associated cardiac dysfunction is detectable by echocardiography it is often beyond meaningful intervention. 99mTc-sestamibi is used clinically to image cardiac perfusion by single photon emission computed tomography (SPECT) imaging, but as a lipophilic cation its distribution is also governed by mitochondrial membrane potential (ΔΨm). Correcting scans for variations in perfusion (using a ΔΨm-independent perfusion tracer such as (bis(N-ethoxy-N-ethyldithiocarbamato)nitrido 99mTc(V)) (99mTc-NOET) could allow 99mTc-sestamibi to be repurposed to specifically report on ΔΨm as a readout of evolving cardiotoxicity. Isolated rat hearts were perfused within a γ-detection apparatus to characterize the pharmacokinetics of 99mTc-sestamibi and 99mTc-NOET in response to mitochondrial perturbation by hypoxia, ionophore (CCCP) or doxorubicin. All interventions induced 99mTc-sestamibi washout; hypoxia from 24.9 ± 2.6% ID to 0.4 ± 6.2%, CCCP from 22.8 ± 2.5% ID to −3.5 ± 3.1%, and doxorubicin from 23.0 ± 2.2% ID to 17.8 ± 0.7, p < 0.05. Cardiac 99mTc-NOET retention (34.0 ± 8.0% ID) was unaffected in all cases. Translating to an in vivo rat model, 2 weeks after bolus doxorubicin injection, there was a dose-dependent loss of cardiac 99mTc-sestamibi retention (from 2.3 ± 0.3 to 0.9 ± 0.2 ID/g with 10 mg/kg (p < 0.05)), while 99mTc-NOET retention (0.93 ± 0.16 ID/g) was unaffected. 99mTc-NOET therefore traps in myocardium independently of the mitochondrial perturbations that induce 99mTc-sestamibi washout, demonstrating proof-of-concept for an imaging approach to detect evolving cardiotoxicity.
Detection of anthracycline-induced cardiotoxicity using perfusion-corrected 99mTc sestamibi SPECT
Veronese M.;
2019
Abstract
By the time cardiotoxicity-associated cardiac dysfunction is detectable by echocardiography it is often beyond meaningful intervention. 99mTc-sestamibi is used clinically to image cardiac perfusion by single photon emission computed tomography (SPECT) imaging, but as a lipophilic cation its distribution is also governed by mitochondrial membrane potential (ΔΨm). Correcting scans for variations in perfusion (using a ΔΨm-independent perfusion tracer such as (bis(N-ethoxy-N-ethyldithiocarbamato)nitrido 99mTc(V)) (99mTc-NOET) could allow 99mTc-sestamibi to be repurposed to specifically report on ΔΨm as a readout of evolving cardiotoxicity. Isolated rat hearts were perfused within a γ-detection apparatus to characterize the pharmacokinetics of 99mTc-sestamibi and 99mTc-NOET in response to mitochondrial perturbation by hypoxia, ionophore (CCCP) or doxorubicin. All interventions induced 99mTc-sestamibi washout; hypoxia from 24.9 ± 2.6% ID to 0.4 ± 6.2%, CCCP from 22.8 ± 2.5% ID to −3.5 ± 3.1%, and doxorubicin from 23.0 ± 2.2% ID to 17.8 ± 0.7, p < 0.05. Cardiac 99mTc-NOET retention (34.0 ± 8.0% ID) was unaffected in all cases. Translating to an in vivo rat model, 2 weeks after bolus doxorubicin injection, there was a dose-dependent loss of cardiac 99mTc-sestamibi retention (from 2.3 ± 0.3 to 0.9 ± 0.2 ID/g with 10 mg/kg (p < 0.05)), while 99mTc-NOET retention (0.93 ± 0.16 ID/g) was unaffected. 99mTc-NOET therefore traps in myocardium independently of the mitochondrial perturbations that induce 99mTc-sestamibi washout, demonstrating proof-of-concept for an imaging approach to detect evolving cardiotoxicity.File | Dimensione | Formato | |
---|---|---|---|
s41598-018-36721-5.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.