We propose a new method for pure-state and subspace preparation in quantum systems, which employs the output of a continuous measurement process and switching dissipative control to improve convergence speed, as well as robustness with respect to the initial conditions. In particular, we prove that the proposed closed-loop strategy makes the desired target globally asymptotically stable both in mean and almost surely, and we show it compares favorably against a time-based and a state-based switching control law, with significant improvements in the case of faulty initialization.

Stabilization Via Feedback Switching for Quantum Stochastic Dynamics

Grigoletto T.
;
Ticozzi F.
2022

Abstract

We propose a new method for pure-state and subspace preparation in quantum systems, which employs the output of a continuous measurement process and switching dissipative control to improve convergence speed, as well as robustness with respect to the initial conditions. In particular, we prove that the proposed closed-loop strategy makes the desired target globally asymptotically stable both in mean and almost surely, and we show it compares favorably against a time-based and a state-based switching control law, with significant improvements in the case of faulty initialization.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3415170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact